RESOLUTIONS AND PERIODICITY

J. ALPERIN¹ AND G. JANUSZ²

ABSTRACT. The representation theory of groups with a cyclic Sylow subgroup is used to give a detailed construction of minimal projective resolutions.

The Artin-Tate theorem [1, p. 262] has as a consequence that a Sylow p-subgroup of a finite group G, for an odd prime p, is cyclic exactly when the cohomology $H^n(G, \mathbb{Z}_p)$ is periodic for positive integers n. Moreover, in this case Swan [4] has shown that the minimal projective resolution of \mathbb{Z}_p over $\mathbb{Z}_p[G]$ is periodic. By using the deep theory of groups with a cyclic Sylow subgroup we can go one step further.

THEOREM. If G is a finite group with a cyclic Sylow p-subgroup for a prime p and F is a splitting field of characteristic p for G then each term of the minimal projective resolution of F over F[G] is indecomposable.

Actually, we shall prove much more, but the indecomposability seems to be the most important conclusion. To describe our results fully we need some notation. Let $e=|N(S_p):C(S_p)|$, where S_p is a Sylow p-subgroup of G, and $V_1 = F$, V_2, \dots, V_e be irreducible F[G] modules in the principal p-block B_0 of G, one from each isomorphism class of such modules. Let U_i be an indecomposable projective F[G] module which has V_i as a homomorphic image so that U_i is determined to within isomorphism. Finally, let T be the Brauer tree corresponding to B_0 so that the vertices are in one-to-one correspondence with the p-conjugacy classes of ordinary irreducible characters in B₀ while the edges correspond one-to-one with the isomorphism classes of irreducible F[G] modules in B_0 . Hence, if E is an edge, let $V_E = V_i$ when the isomorphism class of V_i corresponds to E. In this case, we also set $U_E = U_i$, the corresponding projective. Each vertex P of T is assigned a multiplicity m(P); it is known that m(P) > 1for at most one vertex P. Moreover, there is a canonical circular ordering of the edges emanating from P determined by the structure of the

Received by the editors April 26, 1972.

AMS (MOS) subject classifications (1969). Primary 2050, 2080.

Key words and phrases. Resolution, periodicity, Brauer tree.

¹ Supported in part by National Science Foundation grants GP-20864 and GP-28700.

² Supported in part by National Science Foundation grant GP-21335.

indecomposable projective F[G] modules in the following way. The projective U_E has a unique maximal submodule M_E which is in turn a sum

$$M_E = K_E(P) + K_E(Q),$$

in which $K_E(P)$ and $K_E(Q)$ are uniserial modules and P and Q are the vertices on E=(PQ). The module $K_E(P)$ has a unique composition series and the composition factors (from the "top down") are $V_{E_1}, V_{E_2}, \cdots, V_E$, where E_1, E_2, \cdots, E are all the edges on P and the initial sequence of distinct V's is repeated m(P) times. A similar statement holds for the vertex Q. The circular ordering on the edges of P is determined by the above sequence in which E_1 follows E. The intersection $K_E(P) \cap K_E(Q) = S(E)$ is the unique minimal submodule of U_E and is isomorphic with V_E .

We shall now describe a canonical infinite sequence of edges of T. Let E_0 be the unique edge connected to the vertex P_0 corresponding to the principal character and let P_1 be the other vertex connected to E_0 . Suppose now that we have defined edges E_0, \dots, E_n and vertices P_0, P_1, \dots, P_{n+1} ; let E_{n+1} be the edge immediately following E_n in the circular ordering around P_{n+1} and let P_{n+2} be the other vertex connected to E_{n+1} . Since T is a tree with exactly e edges it follows readily that in the sequence E_0, \dots, E_{2e-1} each edge appears exactly twice and that $E_{i+2e} = E_i$ for all i.

THEOREM 1. If G is a finite group with cyclic Sylow p-subgroup, F is a splitting field of characteristic p for G and

$$\rightarrow X_{n+1} \rightarrow X_n \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow F \rightarrow 0$$

is the minimal projective resolution for F over F[G], then $X_i \simeq U_{E_i}$, i > 0, where E_i is the ith edge in the canonical sequence of edges of the Brauer tree for the principal p-block of G.

In view of the remarks above, the nature of the period 2e is "explained". A similar result, in which certain p-adic rings of characteristic zero replace F, is now immediate.

As a first step in the rather short proof we establish the following

LEMMA. Let P be a vertex of T, E and F consecutive edges on P and let Q be the other vertex connected to F. There exists an exact sequence

$$0 \to K_F(Q) \to U_F \to K_E(P) \to 0$$
.

PROOF. The module $K_E(P)$ is uniserial with "top" composition factor isomorphic to V_F , since F follows E in the ordering around P. Thus, $K_E(P)$ is a homomorphic image of U_F . The kernel of this map contains the socle S(F) of U_F since $K_E(P)$ is not projective and so is not isomorphic to U_F . Moreover, this kernel must contain $K_F(Q)$ because none of the composition factors of $K_F(Q)/S(F)$ are composition factors of $K_E(P)$. The

composition lengths of $U_F/K_F(Q)$ and $K_E(P)$ are each equal to the product of m(P) and the number of edges on P, so the lemma follows.

PROOF (OF THEOREM 1). Let $E_0 = (P_0P_1)$, $E_1 = (P_1P_2)$, \cdots be the canonical sequence of edges. Iterated application of the lemma yields the exact sequence

$$\cdots \rightarrow U_{E_0} \rightarrow U_{E_1} \rightarrow U_{E_0} \rightarrow K_{E_0}(P_0) \rightarrow 0$$
,

in which the image of $U_{E_{n+1}}$ in U_{E_n} is $K_{E_n}(P_n)$. But $m(P_0)=1$ and E_0 is the unique edge connected to P_0 so $K_{E_0}(P_0)$ is the minimal submodule of U_{E_0} and $K_E(P_0) \simeq F$. Hence, we have obtained a resolution for F, which is clearly minimal since each term is indecomposable.

Minimal resolutions of certain other irreducible modules can be similarly described. If the module V_E corresponds to the edge E=(PQ) with E the only edge connected to P and m(P)=1 then the theorem holds as stated for the minimal resolution of V_E using a canonical sequence starting with $E_0=E$ and $P_0=P$. Again the period is 2e. It is known that E satisfies these conditions if and only if V_E is the reduction modulo p of an R[G] module for a suitable p-adic ring R of characteristic zero (see Corollary 7.3 of [2]). When E is an edge not satisfying these conditions, the minimal projective resolution of V_E will always contain decomposable terms and appears to be considerably more difficult to describe.

For example, let G=PSL(2, p) with p a prime exceeding three. In this case $e=\frac{1}{2}(p-1)$ and the Brauer tree is an open polygon with edges

$$E_0 = (P_0 P_1), E_1 = (P_1 P_2), \cdots, E_{e-1} = (P_{e-1} P_e)$$

and where $m(P_e)=2$. The minimal projective resolution for $V_{E_{e-1}}$ contains a term which is the sum of e indecomposable projectives. However, this is as "bad" as the situation can get, as we shall now show.

THEOREM 2. Let G and F be as in Theorem 1 and let M be any indecomposable F[G] module. If the minimal projective resolution for M over F[G] is

$$\rightarrow X_n \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow M \rightarrow 0$$

then X_i , $i \ge 0$, has no repeated indecomposable summand. In particular, X_i is the sum of at most e indecomposable F[G] modules where e is the number of irreducible F[G] modules in the p-block containing M.

PROOF. Let $X_{-1} = M$ and let D_i , $i \ge 0$, be the kernel of the map from X_i to X_{i-1} . Since M is indecomposable and the resolution is minimal, it follows that D_0 is indecomposable [3]. Iterating this argument we deduce that each D_i is indecomposable, $i \ge 0$. By Corollary 7.7 of [2] the socle of D_i is multiplicity free. The minimality of the resolution guarantees that the socle of D_i and the socle of X_i coincide. The theorem follows.

REFERENCES

- 1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956, MR 17, 1040; MR 22 #8045.
- 2. G. J. Janusz, *Indecomposable modules for finite groups*, Ann. of Math. (2) 89 (1969), 209-241. MR 39 #5622.
- 3. A. Heller, Indecomposable representations and the loop-space operation, Proc. Amer. Math. Soc. 12 (1961), 640-643. MR 23 #A3778.
- 4. R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-291. MR 23 #A2205.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801