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SMOOTH SEQUENCE SPACES AND ASSOCIATED
NUCLEARITY

T. TERZIOGLU

Abstract. We characterize A-nuclear smooth sequence spaces

where X itself is a smooth sequence space of infinite type. We also

show that there is a duality between smooth sequence spaces of

finite and infinite type.

1. Introduction. Smooth sequence spaces were introduced in [9] as

generalizations of power series spaces. In a later work [10] nuclear and

strongly nuclear smooth sequence spaces were investigated, but some of

the results obtained depended on a characterization of strongly nuclear

sequence spaces by Brudovskiï ([1], [2]), which was shown to be in-

complete by Köthe [6].

In [8] Ramanujan defined A (a)-nuclear spaces, where A(a) is a nuclear

power series space of infinite type. In extending this notion Dubinsky and

Ramanujan [3] replaced the power series space A(<x) by a nuclear smooth

sequence space X(P) of infinite type where the power set P is assumed to be

countable. In the present paper we remove this restriction and consider

this type of nuclearity for smooth sequence spaces and their duals. It turns

out that for smooth sequence spaces uniform A(P)-nuclearity is equivalent

to A(P)-nuclearity. Therefore the results of §2 of [10] are correct (see

Theorems (3.1), (3.2) and their corollaries).

2. Smooth sequence spaces and associated nuclearity. For two sequences

of scalars x=(xn) and y=(yn) we write x^y if xn-^yn for all n e N=

{0, 1, 2, • • •}. We denote by cp the space of all sequences with finitely many

nonzero terms and by m the space of all sequences. A set of sequences of

nonnegative real numbers K will be called a Käthe set if it satisfies the

following conditions:

(Kl) If a and b are two elements of K there is a c e K with a<c and

b^c.

(K2) For every integer r e N there is a e K with ar>0.

The space of all sequences x=(xn), such that />a(.x)=2™=o |*nlan<°°

for every a e K, is called the Köthe space generated by K and denoted by
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X(K). The seminorms pa( ), a e K, define a locally convex Hausdorff

topology on X(K).

A Köthe set P will be called a power set of infinite type if it satisfies the

following additional conditions:

(Al) For each a e P, 0<anf^an+1 for every n e N.

(A2) For each aeP there is a b e P with (an)2^bn for all n e N.

It is easily checked that (A2) can be replaced by

(A2)' For a e P and b e P there is a c e P with anbn^cn for all n e N.

If P is a power set of infinite type the Köthe space ?,(P) is called a

smooth sequence space of infinite type or a G „-space (cf. [9, III, 3] and

[3, (2.5)]).
If a=(a„) is a nondecreasing sequence of nonnegative real numbers, the

power series space of infinite type A(a) is the Gœ-space generated by the

power set {(kXn):k=l, 2, 3, - - •}. For are=log(w+l) we obtain the space

of all rapidly decreasing sequences s, which can also be generated by the

Köthe set {C«-f-1 )fc:Ar= 1, 2, • • •}.

A Köthe set Q will be called a power set of finite type if it satisfies the

following conditions :

(Bl) For each q e Q, 0<qn+1^qn for all n e N.

(B2) For each q e Q there is an r e Q with ^/'qn^rn for all n e N.

The Köthe space X(Q) is then called a smooth sequence space of finite

type or a G^space [9, III, 3].

A power series space of finite type Aj(a) is the Grspace generated by the

Köthe set {((\-l¡kf"):k=\, 2, 3, • • •}.

Proposition (2.1). A Gx-space X(P) is nuclear if and only if for every

keN there exists a beP and p>0 such that (n+l)k^pbnfor all neN.

Proof. X(P) is nuclear if and only if there is an element a of P with

(1/aJ el1 [9, III, 3, (1)]. Hence the condition is clearly sufficient. On the

other hand if there is an a e P with (1/aJ e I1 we have by (Al)

1        n  1        °° 1
(« + i)-!-^2- = 2-<00-

an i=0 ai ¿=0 ai

Therefore (n + l)^pan for some p>0. For k e N we choose b eP with

(anfk<bn for all neN. Then (/i+l)*<//¿>„.

From now on we will assume that A(P0) is a fixed nuclear Gœ-space. By

the proposition we have proved X(P0)<^s<=l1. A linear mapping £ of a

normed space £ into another normed space £ is called X(P0)-nuclear

([3], [8]) if it has a representation in the form £x=2"=o «»!),(%„ where

(aj e X(P0) and (vn), (yn) are bounded sequences in £' and £ respectively.

A locally convex space £ is called X(P0)-nuclear [3] if for every absolutely

convex and closed neighbourhood U there is another such neighbourhood
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V contained in U such that the canonical mapping of the associated

Banach space Êv into the associated Banach space Ëu is A(P0)-nuclear.

The next two results can be proved in the usual way (cf. [3], [6], [7]).

Theorem (2.1). A locally convex space E is ?.(P0)-nuclear if and only if

for every absolutely convex and closed neighbourhood U there exists another

such neighbourhood Vsuch that (dn(V, U))eX(P0), where dn(V, U) is the

nth diameter of V with respect to U (cf. [7], [9]).

Theorem (2.2). A Köthe space ?.(K) is X(P0)-nuclear if and only if for

each a e K there exists ab e K with a^b and an infection a : N^-N such that

o(N) = {n e 7V:a„#0} and (a.,n,lb.ln)) 6 X(P0).

Following Köthe [6] we call a Köthe space X(K) uniformly X(P0)-nuclear

if there is a "universal" permutation o such that for every a e K there are

ab e K and an x e X(P0) with a^n)=%xnbo{n) for all ne N.

3. A(P0)-nuclearity of smooth sequence spaces. We consider first the

question when a G^-space is ¿(P0)-nuclear. This way we generalize the

result in [10] about strongly nuclear (=s-nuclear) Gœ-spaces.

Theorem (3.1). For a G^-space X(P) the following conditions are

equivalent :

(i) X(P) is X(P0)-nuclear.

(ii) ?.(P) is uniformly X(P0)-nuclear.

(iii) For every b e P there is an a e P with b^a and (l¡an) e X(P0).

(iv) There is an aeP with (ljan) e X(P0).

Proof. If X(P) is A(P0)-nuclear then for each b eP there is an a eP

with b^a and (dn(Ua, Ub)) e ;.(P0) by Theorem (2.1). Here «7„=

{x e X(P):pa(x)-^l}. Let Ln be the linear span of e0, elt • • •, en. For

xe ¿„we have

Paix) = S \Xi\ bf-r ^ -f pb(x).
i=o bi      o0

Hence

(bJan)(Ub n L„) c Ua.

By a result due to Tikhomirov [9,1, 2, (1)] it follows that bJan^dn(Ua, UB)

for all neN. Therefore (1/aJ e X(P0).

If there is an a e P with (1/aJ e ?.(P0) then for b e P we choose deP

with a^d and bl^d. Hence (ljdn) e X(P0) also. We choose ceP with

(i/n)2_cn for all neN. From the inequality

bjc„ = bj(dny- = \\dn
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it follows that (bjcn) e X(P0). Therefore X(P) is uniformly A(P0)-nuclear.

Since a uniformly A(P0)-nuclear Köthe space is A(P0)-nuclear and since

condition (iv) follows trivially from (iii) the proof is finished.

Remark. If a Gœ-space X(P) is >l(P0)-nuclear then by condition (iv)

there is an a e P with (l/a„) e X(P0). This means that for each c eP0 there

is a constant p>0 with cn^pan for all jig TV. Therefore A(P)<=a(P0).

Further the inclusion is strict, because X(P„) itself is not A(P0)-nuclear,

again by (iv).

Theorem (3.2). For a Gi-space X(Q) the following conditions are

equivalent:

(i) X(Q) is X(P0)-nuclear.

(ii) X(Q) is uniformly X(P0)-nuclear.

(iii) Q^X(P0).

Proof. If X(Q) is A(P0)-nuclear then for every aeQ there is a b e Q

with a^b such that (dn(Ub, Ua)) e X(P0) by Theorem (2.1). We proceed as

in the proof of the previous theorem by considering x e Ln. From

p6(x) = 2 w «<- = ->*«
i=0 ai        an

we get

(aJb0)(Ua n Ln) c Ub.

By Tikhomirov's theorem we have an^b0 dn(Ub, Ua) and so (an) e X(P0).

If Q c X(P0) then for a e Q we choose b e Q such that an <: (¿»J2 for all n.

Since è e X(P0) the G,-space A(ô) is uniformly A(P0)-nuclear.

In [9] it was shown that if P and Q are countable power sets of infinite

and finite type respectively, then X(P) is not isomorphic to X(Q), provided

that one of the spaces is a Schwartz space. The two theorems we have

proved in this section enable us to give a similar result in a simple fashion.

Corollary (3.1). A nuclear G^-space X(P) cannot be isomorphic to a

Gi-space X(Q).

Proof. If X(P) is isomorphic to a Grspace X(Q) their diametral

dimensions would be equal. From [9, III, (3) and (6)] we would obtain

(X(P))'=X(Q). Therefore Q<=X(P) and, by Theorem (3.2), X(Q) would be

A(P)-nuclear. This contradicts Theorem (3.1), since X(P) is not X(P)-

nuclear.
As another application of Theorem (3.2) we generalize a result about

power series spaces [10, 2, (4)].
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Corollary (3.2). For a Gx-space XiQ) the following conditions are

equivalent:

(j) X(Q) is nuclear.

(ii) X(Q) is s-nuclear.

(iii) X(Q) is uniformly s-nuclear.

(iv) gc/i.

(v) ßc,.

Proof. Conditions (i), (iv), and (v) are equivalent by [9, III, 3, (7)].

By Theorem (3.2) the conditions (v), (ii), and (iii) are equivalent.

In [8, Proposition 5] a sufficient condition for the A(a)-nuclearity of a

power series space A(ß) is given. We show that this condition is also

necessary in the following result.

Corollary (3.3).   Let A(a) be a nuclear power series space of infinite

type. The following conditions are equivalent:

(i) A(ß) is A(a.)-nuclear.

(ii) Ax(ß) is A(a)-nuclear.

(iii) lim(/?„/a„)=co.

Proof. If A(ß) is A(a)-nuclear by Theorem (3.1) there is a number q

with 0<#<1 and (/»)eA(a). This implies that lim(q)ß'/''"=0 by [8,

Lemma 2]. Hence lim(/?„/a„)=oo.

If lim(/?n/an)= co, then for every k we have qß«'Xn^kqk for almost all n,

where 0<q<l. This implies that (/»)eA(ct) and so A,(/9) is A(a)-
nuclear by Theorem (3.2).

Finally, if Ax(ß) is A(a)-nuclear, then, by Theorem (3.2), (qß») eA(oc)

for some 0<^<1. By Theorem (3.1) (iv), A(ß) is then A(oc)-nucIear.

4. The dual of a smooth sequence space. The topological dual of a

Köthe space X(K) is isomorphic to the space of all sequences u for which

|wn| =pa„ for some a e K and p>0. In general X(K)' is a proper subspace

of the a-dual X(Kf. For every bounded subset B of a nuclear Köthe space

X(K) there is a positive element x of X(K) such that supyeB |_yn|=xn for all

neN [5]. Hence if L denotes the Köthe set {x>0:x e X(K)} then X(K)*

is set-theoretically equal to X(L) and the strong dual X(K)'b is a dense sub-

space of the Köthe space X(L). Our aim is to investigate the duals of smooth

sequence spaces and show that there is a certain duality between Gx- and

(/„-spaces.

Proposition (4.1).   A nuclear smooth sequence space is also co-nuclear.

Proof. Since a nuclear G,-space is uniformly s-nuclear by Corollary

(3.2), its strong dual is also nuclear [10, 3, (1)]. For a nuclear G,»-space
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X(P) it is sufficient to show that ((n+\fxn) e X(P) whenever (xn) e X(P)

by the result of Köthe mentioned above. By Proposition (2.1), there is a

beP with (n+l)2^pbn for some p>0. For a eP we choose ceP such

that anbn^cn for all neN. We have

CO CO

2(n + l)2 |xj an = p 2 |x»| cn < co.
n=0 n=0

Theorem (4.1). If X(P) is a nuclear Gœ-space with the property that

there is ay e X(P) with yn^0for all n eN, the strong dual of X(P) is a dense

subspace of a uniformly X(P)-nuclear Gx-space.

Proof. Let Q={x e X(P):0<xn+i^xn}. Since there is a z e X(P) with

Q<\yn\=zn and zn+i=zn for all ne N, Q is not empty [3, Lemma (2.8)].

If x e Q and a G P we choose b eP with (an)2<2»B. Since

sup xn(anf <: sup x„f>„ < co
n n

we have that the sequence (yjxnan) is bounded for every a eP. By the

Grothendieck-Pietsch criterion (y/x„) e Q also. Therefore Q is a power

set of finite type. Let £={z g A(P):z=0}. By Lemma (2.8) of [3] for every

z e L there exists x e X(P) with 0^zn^x„ and xn+l^xn. By adding some

j g ß to *, if necessary, we may assume that xn^0 for all n e N and so

x e Q. Therefore the Köthe spaces X(Q) and X(L) are set-theoretically

equal and the topologies defined by Q and L coincide. Since Q<=X(P) by

Theorem (3.2), the G^space X(Q) is uniformly ¿(P)-nuclear.

Remark. If P is the set of all nondecreasing sequences of positive real

numbers the nuclear G^-space X(P) is nothing but cp with its usual direct

sum topology. Its strong topological dual a» is not a G,-space; for if co =

X(Q) for some power set of finite type Q, then Q^cp which contradicts the

condition (Bl). On the other hand co is uniformly çc-nuclear.

Corollary (4.1). If P is a countable power set of infinite type and

if X(P) is nuclear, then X(P)'b is a uniformly X(P)-nuclear Gx-space.

Proof. If P is countable, then the G^-space X(P) contains an element

y with yn?£Q for all neN [3, Lemma (2.9)]. Since A(P) is barrelled its

topological dual coincides with its oc-dual and so X(P)'b=X(Q), where Q is

the power set of finite type constructed in the proof of the theorem.

In particular, the strong dual of a nuclear power series space A (a) is a

uniformly A(a)-nuclear Gj-space [8, Proposition 6].

Corollary (4.2). Let X(P) be a nuclear Gx-space such that there is a

y G X(P) with ynj±bfor all neN. IfX(P) is X(P0)-nuclear then X(P)'b is also

X(P0)-nuclear.
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Proof. Let Q be the power set of finite type constructed in the proof

of the theorem. By the remark following Theorem (3.1) we have X(P)<=-

X(P0). Hence QCX(P0) and by Theorem (3.2). X(Q) is a A(P0)-nuclear Gx-

space. Since X(P)'b is a subspace of X(Q), then it is also A(P0)-nuclear.

Remark. Since the strong dual of a nuclear Gœ-space X(P) is X(P)-

nuclear but X(P) itself is not A(P)-nuclear, the converse of this result is

false.

Theorem (4.2). The strong dual of a nuclear Gx-space is a dense sub-

space of a nuclear G^-space.

Proof. Let P={xe ?.(Q):0<x0^Xx^- • •} where X(Q) is a nuclear

Grspace. By Corollary (3.2) every bounded sequence is an element of X(Q)

and so P is not empty. If x e P and aeQvie choose b e Q with yjan^bn

for all neN. Since (xnbn) is a bounded sequence, it follows that (x£an)

is also bounded for every a e Q and hence (xl) e X(Q). Therefore P is a

power set of infinite type. Our aim is to show that if £=(y e X(Q):y^.O}

then X(L) is set-theoretically equal and topologically isomorphic to the

G^-space X(P). Let y e L, xn=sup{yi:0^i^n} and p=sup{ynan:n e N}

where a=(an) e Q. From

xn = p sup (1/a,.) <; p/an
OííSn

it follows that x e X(Q) and yn^xn for all neN. By adding a sequence

from P to x, if necessary, we may assume that xn>0 for all neN. Hence

xeP and so X(L)=)\P). The nuclearity of X(Q)'b follows from Proposition

(4.1).
Remark. If g is a countable power set of finite type, then X(Q)'b co-

incides with A(P). Hence the strong dual of a nuclear power series space of

finite type is a nuclear Gœ-space.

Corollary (4.3). Let X(Q) be a nuclear Gx-space. If X(Q)'b is X(P0)-

nuclear then ?.(Q) is also ?.(P0)-nuclear.

Proof. Since X(Q)'b is a dense subspace of ?.(P), the G^-space X(P) is

also ;.(P0)-nuclear, where P={x e X(Q):0<xn+1^xn}. Therefore gcX(p)

and ?.(P) is contained in X(P0) by the remark following Theorem (3.1).

Hence X(Q) is ¿(P0)-nuclear by Theorem (3.2).
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