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PREIMAGES OF POINTS UNDER THE NATURAL MAP
FROM ß(N x N) TO ßN X ßN

NEIL HINDMAN

Abstract. This paper deals with the size of the preimages of

points of ßN x ßN under the continuous extension, t, of the identity

map on NxN. It is concerned with those points (p, q) of ßNxßN

for which t_1(/>, q) is infinite and extends the work of Blass [1] who

thoroughly considered those points with finite preimages.

1. Introduction. In the construction of ßN used here the points of

ßN\N are free ultrafilters on A^. The reader is referred to the Gillman and

Jerison textbook [2] for this construction and any unfamiliar terminology.

It is easily seen that if either p or q is in A^ then |t_1(/>, 9)1 = 1- (See

Lemma 2.1 below.) In addition Blass [1] has shown the following, where

p and q are in ßN\N. For any p, |t-1(/>,/?)|_3 and equality holds if and

only if/» is a Ramsey ultrafilter. (An ultrafilter/» on N is Ramsey provided

whenever N is the union of pairwise disjoint subsets An either some An

is in/» or there is some B in/» such that \BC\An\ = l for each n. An ultra-

filter p is a £-point of ßN\N provided for each countable subset {Zn}£l,

of p there is a member Z of p such that Z\Zn is finite for each n, so in

particular each Ramsey ultrafilter is a £-point of ßN\N.) If p and q are

Ramsey and not isomorphic (i.e. there is no permutation of N whose

extension to ßN takes /» to q) then \T~1(p,q)\=2. He also shows, as-

suming the continuum hypothesis, that for every integer n bigger than 1

there exist/» and q with \r~1(p,q)\=n. Both [3] and [1] contain the in-

formation that if |t_i(/7, <7)|=2 then p and q are £-points of ßN\N.

It is shown here that there exists a £-point /» of ßN\N such that

|t-1(/»,p)\=2c and that there exist distinct £-points p and q such that

\r~l(p,q)\=2c. Both results assume the continuum hypothesis. (In fact

the existence of £-points of ßN\N has not been shown without the aid of

the continuum hypothesis.) It is also shown that there exists a point/? of

ßN\N such that {^(p, q)\ =2C for every q in ßN\N.

2. Preliminary lemmas. Lemmas 2.1 and 2.2 are well known. Their

proofs are included for completeness.
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2.1. Lemma. Let p and q be elements of ßN and let neN. Then

|t_1(/7, q)\ _^ if and only if there exist n pairwise disjoint subsets of NX N

such that (p,q) is in the closure in ßNxßN of each.

Proof. Necessity. Let {/•,}"=1St~1 (p,q) such that r^r, when i^j.

Then there exists {A{}Za such that At e ri for each / and A( nA¡= 0 when

iyíj. Suppose for some i that (/», q) $ clßWXßNA(. Then there is a neighbor-

hood U of (p,q) in ßNxßN such that UC\Ai=0. But then ^(U)^

Af=0 while t-^C/) is a neighborhood of rt in ß(NxN).

Sufficiency. Let {AA"=1 he a set of pairwise disjoint subsets of NxN

such that (p,q)e(\?=1clßNxßNAi. Now T(clí(jVxAr)^¿)2clPArxíAr^¿ for

each i. Thus, if i<n, one has some r¿ in r_1(/», #) ncl^y^y)^. If z#j then

AiC\Aj=0 so r^r,.

2.2. Lemma. Let p and q be elements of ßN. If [t-1(/», q)\—^X0 then

|r-H/>,?)|-2«.

Proof. Since |^(A7xAr)|=2c we only need show that |t-1(/»,9)|_2c.

But t_1(/7, q) is an infinite compact subset of the £-space ß(NxN) so by

14N of [2] it contains a copy of ßN.

In the proofs of the main theorems one constructs ultrafilters /» and q

on N such that (/», 9) is in the closure of each of K0 pairwise disjoint sub-

sets of NxN. Lemmas 2.1 and 2.2 then guarantee that ¡T~1(p,q)\=2c.

The author apologizes for the formalization in the following definition.

Intuitively it says that A has property S if for each m there is an n such

that each «-block of A^ contains an m-gap of A.

2.3. Definition. Let A<=,N and let the variables m, n, z and x range

over N. A has property S if (V/?j)(3«)(Vz)(3;c)(z<;c<x-|-/w<z+« and

{x, x+l, • • • ,x+m}C\A=0).

The easy proof of the following lemma is omitted.

2.4. Lemma.    If A and B have property S then A UB has property S.

2.5. Definition. Let reN. Z(r)={(m, n) e NxN:rn<m^(r+l)n}

and £(r)=U {Z(s):s=2T~1(2m-l) for some m in N).

The set {B(r)}reN forms the countable collection of pairwise disjoint

subsets of NxN referred to above.

2.6. Lemma. Let A^N and let B be an infinite subset of N. If there is

some r in N such that (A xB) C\B(r)=0 then A has property S.

Proof. Let me N and let w e B such that w>m. Let n=2r+1 - w and

let z e N. Let/» be the least integer such that z^2r-1(2/>+l)M'+w and let
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x=2r-x(2p+3)w+l. Then

z <; 2r-1(2p + \)w + w < 2r-x(2p + 3)w < x < x + m

^ x + w - 1 = 2r~x(2p + 3)w + w

= 2r-1(2p - l)w + w + 2r+1w

= 2r-x(2p - \)w + w + n < z + n.

(The last inequality holds because of the choice of p.) Now let k e

{0, 1, • ■ • , m}. If x+k were in A then (x+/c, w) would be in (AxB)f~\

Z(2T~x(2p+3)) hence in (AxB)r\B(r). Thus {x, x+1, ■ • • , x+m}n

j4 = 0 as desired.

All the machinery needed to prove Theorem 3.1 has now been devel-

oped. The rest of this section is needed to obtain pairs of P-points of

ßN\N with large preimages.

2.7. Lemma. Let {Ck}k=l be a set of subsets of NxN and let A^N.

If for each finite subset F of A there exists {Dk}k=l such that F=\Jkt=l Dk

and, for each k, (Dkx Dk) C\Ck= 0 then there exists {Ak}k=1 such that

^ = U*=i Ak and, for each k, (AkxAk) C\Ck=0.

Proof. If A is itself finite there is nothing to prove. Otherwise let T

he the set of all «-tuples (Gx, G2, ■ ■ ■ , Gn) such that (1) each Gk is a finite

subset of A and (2) whenever F is a finite subset of A which contains

\Jk=x Ck there is a set {Dk}k=1 such that \Jk=1 Dk=F and, for each k,

Dt2 Gk and (Dkx Dk) r\Ck= 0.

Partially order T by agreeing that (G,, G2, ■ • ■ , Gn)< (Hx, H2, • ■ • , Hv)

provided Gk^Hk for each k and the first element of A\{Jk=1 Gk is in

ULt Hk.
We first note that T has no maximal element. Suppose instead that

(Gx, G2, ■ • ■ , G„) is a maximal element of T and let a he the first element

of ^4\U*=i G*. For eachy and k in {1,2, • • ■ ,n} let iY, k=Gk if j^k and

let HIJt-GkU{a} if j=k. If, for any/ (HJA, Hi2, ■■'■, Hjn) e T then

(Gx, G2, ■ ■ ■ , Gn) is not maximal in T. Consequently, for eachy" one has

(Hj x, Hj,2, " " * , Hj.n) $ f- That is, for each/ there is a finite subset F¡ of

A containing \j£.\Hjtk such that if Fj=\Jk=1 Dk and, for each k,

Hj,ic^Dk then, for some k, (Dkx Dk)C\Ck^0. Let F=(J"=i F¡. Then

F2 U*=i Gk U{a) and Fis a finite subset of A. Since (Glt G2,---,Gn)eT

there exists a set {Dk}k=1 such that F=U*-i Dk and, for each k, Gk^ Dk

and DkxDknCk=0. But then, for some/ a e Dt. For this/'one has F, =

IjLi (Dkr\FA and, for eachk, //,ts Dk(xF¡and (Dk OF,)x (Dk(xF}) n

Cs= 0 , contradicting the choice of F3.

Note also that by the hypothesis of the lemma, (0, 0, • ■ • , 0) eF

so that Ty¿ 0. Since the conclusion of Zorn's lemma fails and since IV 0

there must be an infinite chain in  T, say {(C-3-1, Gi2, • • • , Gj-7)}fLx
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For each kin {1, 2, • • • , n} let Ak=\Jjli G¿ k. Then A = \Jkl=l ̂ ^ since the

y'th element of A must be in IjLi GJk, And (Ak xAk)r\Ck=0 for each k

since (GjkxGj_k)r\Ck=0 for each/' and k and since Gj,k^Gj+lik.

It may be noted that in the above proof one can, by suitably restricting

T, appeal to König's infinity lemma instead of Zorn's lemma to establish

the infinite chain in T.

2.8. Definition. A subset A of A' is sparse if there exist n in N, a set

{AA"=i of subsets of N and a subset {r,}"=1 of N such that v4 = |J"=1 A{

and (AixAi)r\B(ri)=0.

Note that the finite union of sparse sets is sparse. Note also that A^ is

not sparse. (If it were one would have N=\J?=1Ai with (/»¿x/Qn

B(rf)=0. Then by Lemma 2.6 each A¿ would have property S and hence,

by Lemma 2.4, N would have property S, which is impossible.)

2.9. Lemma. If A is not sparse then for each finite sequence {rJíLi in N

there is a finite subset F of A such that for each {£¿}"=1 for which F=

Ulli T>i one has some i such that (Di x Df) r\B(rt)j± 0.

Proof. Suppose there exists {rj"=1 such that each finite subset F of A

can be written £=UÎU D, with (DixDi)i~\B(ri)=0 for each i. Then

by Lemma 2.7 there exists {Af}^=i such that /l = (J?=i A¡ and (AtxAA n

B(ri)=0 for each /. Hence A is sparse, a contradiction.

3. Points with infinite preimages. The first theorem provides without

the benefit of the continuum hypothesis, an abundance of pairs (p, q) in

ßNxßN with infinite preimages.

3.1. Theorem. There is a point p of ßN\N such that \r~1(p,q)\=2c for

every point q in ßN\N.

Proof. By Lemma 2.4, the sets with property S constitute a proper

ideal of subsets of N, so their complements constitute a proper filter.

By extending this filter to an ultrafilter, we obtain a point/» of ßN\N, no

elements of which have property S.

Now let q e ßN\N and let Z e p, W eq and r e N. Then W is infinite

and Z does not have property S so by Lemma 2.6 (Zx W) C\B(r)^à 0.

Thus (p,q) e c\pXxßyB(r) for each r in N and so, by Lemmas 2.1 and 2.2,

\T-Hp,q)\=2°. '
It should be observed that, by taking C(r) = {(x,y):(y, x) e B(r)}, one

also has that |t-1(<7, p)\ =2C where p is the point constructed above and q

is any point in ßN\N.

It should also be noted that the point p constructed in Theorem 3.1

cannot be a P-point of ßN\N'. Indeed any £-point of ßN\N must have

some element with property S. (To see this let An k = {k+rn:r e N} for
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each n in N and kin {1,2,- ■ ■ ,n}. Then any ultrafilter p on N has, for

each«, some k such that y4„ k e p. Let, for eachn,Zn=Ankwhere Ankep.

If/» is in addition a P-point of ßN\N there is a member Z of/» such that

Z\Z„ is finite for each n. This Z must have property S.)

One might then guess, since points with the smallest possible pre-

images must be P-points, that all pairs of P-points would have finite

preimages. The following theorem shows that this is not the case, provided

the continuum hypothesis is assumed.

3.2. Theorem. Assume the continuum hypothesis. There exists a

P-point p ofßN\Nsuch that ¡r^ip, p)\=2c.

Proof. Index the subsets of N by the ordinals less than co,, writing

0>(N) = {AAx<e>i. If A0 is sparse let Z0=N\A0. Otherwise let Z0=A0. Let

K0=Z0 and assume that for each cr<a we have chosen Za and Va such

that: (l)Z=AaoxZ=N\A„ (2)ify<othen\Va\Zy\<X0and\Va\Vy\<
X0; and (3) if T is a finite subset of {Zy:y^o} u{Fy:y^<r} then f] r

is not sparse. These inductive hypotheses clearly hold when ct = 0.

If there is some finite subset T of {Z„:ct<k} u{Kff:o-<(x} such that

fl rn/4a is sparse let ZX=N\AX. Otherwise let ZX=AX. Let {rVn}%=ï be

the set of finite sequences in N where Wn={rn ¡}J¡^) and let {C/J"=1 =

{Z,:cr<a}U{Fff:o-«x}. Let Sn=(]^x Uk.

Note that if T is a finite subset of {Za:o^a.} \J{Va:o<x) then f) T is

not sparse. To see this suppose instead there is a finite subset T such that

f) T is sparse. Then necessarily r=n U{ZJ where Ilç{Zff:o-<a}U

{Va:o<v.} by inductive hypothesis (3). But then, by the choice ofZa, one

has a finite subfamily A of {Z<T:cr<a} (J{Va:o<x} such that f) AO/la

is sparse and one has ZX = N\AX. But then, letting r' = Aun one con-

cludes that H L' is sparse, contradicting hypothesis (3).

Consequently each S„ is not sparse. By Lemma 2.9 for each pair of

natural numbers (n, t) there exists a finite subset Fnt of St such that for

each set {DJ^?' for which F„ ^{JTJ^ A- there is some /' such that

iDixDi)nBirn^0- Let K4=lJ£i U«-i F„tt.
Hypothesis (1) is trivially satisfied. Let <r=a. Then Za~2.Sk for some k

and we have that Fa\Z,s|J?=i UU FnA. (If t>k then F^S^çZ,.)

Therefore |Ka\Zo|<S0. Identically one sees that \Vf\Va\<.X0 when cr<a

so that the hypothesis (2) is satisfied.

It has already been shown that if T is a finite subset of {Za:o^a.} u

{Va:a<a.} then f) T is not sparse. So to complete the induction it is only

required to show that for such r, Ç] T n Va is not sparse. There is some

k such that C] T^Sk so it indeed suffices to show that S1.C\VaL is not

sparse.
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Suppose instead that there are some {Df}fLi and {rf}^Lx such that

Sk n Fa=IJz™i A and (D(x Df) nj?(r,)= 0 for each /. Then {rAZi= Wn
for some «. Let t=max{n, k} and let £,=£», OSj for each i. Then S( n

F£t=U™1 i>; and (£í x£x) n£(r¿)=0 for each /. But £n<çStnKa so

that (D'i x D'A nB(rf)9i 0 for some i, a contradiction.

Thus each of the inductive hypotheses hold and we may choose Zx

and Vx for each o.<co1. Let /»={Za:a<co1} U{Fa:a<ft)j}. By inductive

hypotheses (1) and (3), p is an ultrafilter on N, and by hypothesis, (2) p is

a £-point of ßN\N. By hypothesis (3), (/>, /») e cl B(r) for each r in N so by

Lemmas 2.1 and 2.2 \r-1(p,p)\=2c.

The author is grateful to A. Blass for pointing out that 3.3 below is

indeed a corollary to Theorem 3.2. The author's original proof involved

a lemma approximately four times as complicated as Lemma 2.7.

3.3. Corollary. There exist distinct P-points p and q of ßN\N such

r/iaI|T-1(/»,?)|=2c.

Proof. Let / be a permutation of N which takes the odd numbers

onto the even numbers. Let fß he the continuous extension of/ from

ßN to ßN and let q=f(p) where/» e ßN\N such that \r~x(p,p)\ =2C. Then

q^p since fß takes no point of ßN to itself. For each r in N let C(r)=

{(x,f(y)):(x,y) e B(r)}. Since (p,p) ec\ßSxßNB(r) for each r one has

(p,q) e clßyxßXC(r) for each r. Thus by Lemmas 2.1 and 2.2 one has

\T-Hp,q)\=2<
The author takes pleasure in thanking the referee for his constructive

criticism and helpful suggestions.
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