PREIMAGES OF POINTS UNDER THE NATURAL MAP FROM $\beta(N \times N)$ TO $\beta N \times \beta N$

NEIL HINDMAN

ABSTRACT. This paper deals with the size of the preimages of points of $\beta N \times \beta N$ under the continuous extension, τ , of the identity map on $N \times N$. It is concerned with those points (p,q) of $\beta N \times \beta N$ for which $\tau^{-1}(p,q)$ is infinite and extends the work of Blass [1] who thoroughly considered those points with finite preimages.

1. **Introduction.** In the construction of βN used here the points of $\beta N \setminus N$ are free ultrafilters on N. The reader is referred to the Gillman and Jerison textbook [2] for this construction and any unfamiliar terminology.

It is easily seen that if either p or q is in N then $|\tau^{-1}(p,q)|=1$. (See Lemma 2.1 below.) In addition Blass [1] has shown the following, where p and q are in $\beta N \setminus N$. For any p, $|\tau^{-1}(p,p)| \ge 3$ and equality holds if and only if p is a Ramsey ultrafilter. (An ultrafilter p on N is Ramsey provided whenever N is the union of pairwise disjoint subsets A_n either some A_n is in p or there is some B in p such that $|B \cap A_n| = 1$ for each n. An ultrafilter p is a p-point of p is a p-point of p such that p is finite for each p is in particular each Ramsey ultrafilter is a p-point of p is finite for each p in particular each Ramsey ultrafilter is a p-point of p in p and p are Ramsey and not isomorphic (i.e. there is no permutation of p is whose extension to p is takes p to p then p in p in

It is shown here that there exists a P-point p of $\beta N \setminus N$ such that $|\tau^{-1}(p,p)|=2^c$ and that there exist distinct P-points p and q such that $|\tau^{-1}(p,q)|=2^c$. Both results assume the continuum hypothesis. (In fact the existence of P-points of $\beta N \setminus N$ has not been shown without the aid of the continuum hypothesis.) It is also shown that there exists a point p of $\beta N \setminus N$ such that $|\tau^{-1}(p,q)|=2^c$ for every q in $\beta N \setminus N$.

2. **Preliminary lemmas.** Lemmas 2.1 and 2.2 are well known. Their proofs are included for completeness.

Received by the editors August 12, 1972.

AMS (MOS) subject classifications (1970). Primary 54C20; Secondary 54D35, 04A10.

- 2.1. LEMMA. Let p and q be elements of βN and let $n \in N$. Then $|\tau^{-1}(p,q)| \ge n$ if and only if there exist n pairwise disjoint subsets of $N \times N$ such that (p,q) is in the closure in $\beta N \times \beta N$ of each.
- PROOF. Necessity. Let $\{r_i\}_{i=1}^n \subseteq \tau^{-1}(p,q)$ such that $r_i \neq r_j$ when $i \neq j$. Then there exists $\{A_i\}_{i=1}^n$ such that $A_i \in r_i$ for each i and $A_i \cap A_j = \emptyset$ when $i \neq j$. Suppose for some i that $(p,q) \notin \operatorname{cl}_{\beta N \times \beta N} A_i$. Then there is a neighborhood U of (p,q) in $\beta N \times \beta N$ such that $U \cap A_i = \emptyset$. But then $\tau^{-1}(U) \cap A_i = \emptyset$ while $\tau^{-1}(U)$ is a neighborhood of r_i in $\beta(N \times N)$.

Sufficiency. Let $\{A_i\}_{i=1}^n$ be a set of pairwise disjoint subsets of $N \times N$ such that $(p,q) \in \bigcap_{i=1}^n \operatorname{cl}_{\beta N \times \beta N} A_i$. Now $\tau(\operatorname{cl}_{\beta(N \times N)} A_i) \supseteq \operatorname{cl}_{\beta N \times \beta N} A_i$ for each i. Thus, if $i \leq n$, one has some r_i in $\tau^{-1}(p,q) \cap \operatorname{cl}_{\beta(N \times N)} A_i$. If $i \neq j$ then $A_i \cap A_i = \emptyset$ so $r_i \neq r_j$.

- 2.2. LEMMA. Let p and q be elements of βN . If $|\tau^{-1}(p,q)| \ge \aleph_0$ then $|\tau^{-1}(p,q)| = 2^c$.
- PROOF. Since $|\beta(N \times N)| = 2^c$ we only need show that $|\tau^{-1}(p,q)| \ge 2^c$. But $\tau^{-1}(p,q)$ is an infinite compact subset of the *F*-space $\beta(N \times N)$ so by 14N of [2] it contains a copy of βN .

In the proofs of the main theorems one constructs ultrafilters p and q on N such that (p, q) is in the closure of each of \aleph_0 pairwise disjoint subsets of $N \times N$. Lemmas 2.1 and 2.2 then guarantee that $|\tau^{-1}(p, q)| = 2^c$.

The author apologizes for the formalization in the following definition. Intuitively it says that A has property S if for each m there is an n such that each n-block of N contains an m-gap of A.

2.3. DEFINITION. Let $A \subseteq N$ and let the variables m, n, z and x range over N. A has property S if $(\forall m)(\exists n)(\forall z)(\exists x)(z < x < x + m < z + n)$ and $\{x, x+1, \dots, x+m\} \cap A = \emptyset$.

The easy proof of the following lemma is omitted.

- 2.4. Lemma. If A and B have property S then $A \cup B$ has property S.
- 2.5. DEFINITION. Let $r \in N$. $Z(r) = \{(m, n) \in N \times N : rn < m \le (r+1)n\}$ and $B(r) = \bigcup \{Z(s) : s = 2^{r-1}(2m-1) \text{ for some } m \text{ in } N\}$.

The set $\{B(r)\}_{r\in N}$ forms the countable collection of pairwise disjoint subsets of $N\times N$ referred to above.

- 2.6. Lemma. Let $A \subseteq N$ and let B be an infinite subset of N. If there is some r in N such that $(A \times B) \cap B(r) = \emptyset$ then A has property S.
- PROOF. Let $m \in N$ and let $w \in B$ such that w > m. Let $n = 2^{r+1} \cdot w$ and let $z \in N$. Let p be the least integer such that $z \le 2^{r-1}(2p+1)w + w$ and let

$$x=2^{r-1}(2p+3)w+1. \text{ Then}$$

$$z \le 2^{r-1}(2p+1)w+w < 2^{r-1}(2p+3)w < x < x+m$$

$$\le x+w-1 = 2^{r-1}(2p+3)w+w$$

$$= 2^{r-1}(2p-1)w+w+2^{r+1}w$$

$$= 2^{r-1}(2p-1)w+w+n < z+n.$$

(The last inequality holds because of the choice of p.) Now let $k \in \{0, 1, \dots, m\}$. If x+k were in A then (x+k, w) would be in $(A \times B) \cap Z(2^{r-1}(2p+3))$ hence in $(A \times B) \cap B(r)$. Thus $\{x, x+1, \dots, x+m\} \cap A = \emptyset$ as desired.

All the machinery needed to prove Theorem 3.1 has now been developed. The rest of this section is needed to obtain pairs of P-points of $\beta N \setminus N$ with large preimages.

2.7. LEMMA. Let $\{C_k\}_{k=1}^n$ be a set of subsets of $N \times N$ and let $A \subseteq N$. If for each finite subset F of A there exists $\{D_k\}_{k=1}^n$ such that $F = \bigcup_{k=1}^n D_k$ and, for each k, $(D_k \times D_k) \cap C_k = \emptyset$ then there exists $\{A_k\}_{k=1}^n$ such that $A = \bigcup_{k=1}^n A_k$ and, for each k, $(A_k \times A_k) \cap C_k = \emptyset$.

PROOF. If A is itself finite there is nothing to prove. Otherwise let Γ be the set of all n-tuples (G_1, G_2, \dots, G_n) such that (1) each G_k is a finite subset of A and (2) whenever F is a finite subset of A which contains $\bigcup_{k=1}^n G_k$ there is a set $\{D_k\}_{k=1}^n$ such that $\bigcup_{k=1}^n D_k = F$ and, for each k, $D_k \supseteq G_k$ and $(D_k \times D_k) \cap C_k = \emptyset$.

Partially order Γ by agreeing that $(G_1, G_2, \dots, G_n) < (H_1, H_2, \dots, H_n)$ provided $G_k \subseteq H_k$ for each k and the first element of $A \setminus \bigcup_{k=1}^n G_k$ is in $\bigcup_{k=1}^n H_k$.

We first note that Γ has no maximal element. Suppose instead that (G_1,G_2,\cdots,G_n) is a maximal element of Γ and let a be the first element of $A\setminus\bigcup_{k=1}^n G_k$. For each j and k in $\{1,2,\cdots,n\}$ let $H_{j,k}=G_k$ if $j\neq k$ and let $H_{j,k}=G_k\cup\{a\}$ if j=k. If, for any j, $(H_{j,1},H_{j,2},\cdots,H_{j,n})\in\Gamma$ then (G_1,G_2,\cdots,G_n) is not maximal in Γ . Consequently, for each j one has $(H_{j,1},H_{j,2},\cdots,H_{j,n})\notin\Gamma$. That is, for each j there is a finite subset F_j of A containing $\bigcup_{k=1}^n H_{j,k}$ such that if $F_j=\bigcup_{k=1}^n D_k$ and, for each k, $H_{j,k}\subseteq D_k$ then, for some k, $(D_k\times D_k)\cap C_k\neq\varnothing$. Let $F=\bigcup_{j=1}^n F_j$. Then $F\supseteq\bigcup_{k=1}^n G_k\cup\{a\}$ and F is a finite subset of A. Since $(G_1,G_2,\cdots,G_n)\in\Gamma$ there exists a set $\{D_k\}_{k=1}^n$ such that $F=\bigcup_{k=1}^n D_k$ and, for each k, $G_k\subseteq D_k$ and $D_k\times D_k\cap C_k=\varnothing$. But then, for some j, $a\in D_j$. For this j one has $F_j=\bigcup_{k=1}^n (D_k\cap F_j)$ and, for each k, $H_{j,k}\subseteq D_k\cap F_j$ and $(D_k\cap F_j)\times (D_k\cap F_j)\cap C_k=\varnothing$, contradicting the choice of F_j .

Note also that by the hypothesis of the lemma, $(\varnothing, \varnothing, \cdots, \varnothing) \in \Gamma$ so that $\Gamma \neq \varnothing$. Since the conclusion of Zorn's lemma fails and since $\Gamma \neq \varnothing$ there must be an infinite chain in Γ , say $\{(G_{j,1}, G_{j,2}, \cdots, G_{j,n})\}_{j=1}^{\infty}$

For each k in $\{1, 2, \dots, n\}$ let $A_k = \bigcup_{j=1}^{\infty} G_{j,k}$. Then $A = \bigcup_{k=1}^{n} A_k$ since the jth element of A must be in $\bigcup_{k=1}^{n} G_{j,k}$. And $(A_k \times A_k) \cap C_k = \emptyset$ for each k since $(G_{j,k} \times G_{j,k}) \cap C_k = \emptyset$ for each j and k and since $G_{j,k} \subseteq G_{j+1,k}$.

It may be noted that in the above proof one can, by suitably restricting Γ , appeal to König's infinity lemma instead of Zorn's lemma to establish the infinite chain in Γ .

2.8. DEFINITION. A subset A of N is sparse if there exist n in N, a set $\{A_i\}_{i=1}^n$ of subsets of N and a subset $\{r_i\}_{i=1}^n$ of N such that $A = \bigcup_{i=1}^n A_i$ and $(A_i \times A_i) \cap B(r_i) = \emptyset$.

Note that the finite union of sparse sets is sparse. Note also that N is not sparse. (If it were one would have $N = \bigcup_{i=1}^{n} A_i$ with $(A_i \times A_i) \cap B(r_i) = \emptyset$. Then by Lemma 2.6 each A_i would have property S and hence, by Lemma 2.4, N would have property S, which is impossible.)

2.9. Lemma. If A is not sparse then for each finite sequence $\{r_i\}_{i=1}^n$ in N there is a finite subset F of A such that for each $\{D_i\}_{i=1}^n$ for which $F = \bigcup_{i=1}^n D_i$ one has some i such that $(D_i \times D_i) \cap B(r_i) \neq \emptyset$.

PROOF. Suppose there exists $\{r_i\}_{i=1}^n$ such that each finite subset F of A can be written $F = \bigcup_{i=1}^n D_i$ with $(D_i \times D_i) \cap B(r_i) = \emptyset$ for each i. Then by Lemma 2.7 there exists $\{A_i\}_{i=1}^n$ such that $A = \bigcup_{i=1}^n A_i$ and $(A_i \times A_i) \cap B(r_i) = \emptyset$ for each i. Hence A is sparse, a contradiction.

- 3. Points with infinite preimages. The first theorem provides without the benefit of the continuum hypothesis, an abundance of pairs (p, q) in $\beta N \times \beta N$ with infinite preimages.
- 3.1. THEOREM. There is a point p of $\beta N \setminus N$ such that $|\tau^{-1}(p,q)| = 2^c$ for every point q in $\beta N \setminus N$.

PROOF. By Lemma 2.4, the sets with property S constitute a proper ideal of subsets of N, so their complements constitute a proper filter. By extending this filter to an ultrafilter, we obtain a point p of $\beta N \backslash N$, no elements of which have property S.

Now let $q \in \beta N \setminus N$ and let $Z \in p$, $W \in q$ and $r \in N$. Then W is infinite and Z does not have property S so by Lemma 2.6 $(Z \times W) \cap B(r) \neq \emptyset$. Thus $(p,q) \in \operatorname{cl}_{\beta N \times \beta N} B(r)$ for each r in N and so, by Lemmas 2.1 and 2.2, $|\tau^{-1}(p,q)| = 2^c$.

It should be observed that, by taking $C(r) = \{(x, y) : (y, x) \in B(r)\}$, one also has that $|\tau^{-1}(q, p)| = 2^c$ where p is the point constructed above and q is any point in $\beta N \setminus N$.

It should also be noted that the point p constructed in Theorem 3.1 cannot be a P-point of $\beta N \setminus N$. Indeed any P-point of $\beta N \setminus N$ must have some element with property S. (To see this let $A_{n,k} = \{k + rn : r \in N\}$ for

each n in N and k in $\{1, 2, \dots, n\}$. Then any ultrafilter p on N has, for each n, some k such that $A_{n,k} \in p$. Let, for each $n, Z_n = A_{n,k}$ where $A_{n,k} \in p$. If p is in addition a P-point of $\beta N \setminus N$ there is a member Z of p such that $Z \setminus Z_n$ is finite for each n. This Z must have property S.)

One might then guess, since points with the smallest possible preimages must be *P*-points, that all pairs of *P*-points would have finite preimages. The following theorem shows that this is not the case, provided the continuum hypothesis is assumed.

3.2. THEOREM. Assume the continuum hypothesis. There exists a P-point p of $\beta N \setminus N$ such that $|\tau^{-1}(p,p)| = 2^c$.

PROOF. Index the subsets of N by the ordinals less than ω_1 , writing $\mathscr{P}(N) = \{A_{\alpha}\}_{\alpha < \omega_1}$. If A_0 is sparse let $Z_0 = N \setminus A_0$. Otherwise let $Z_0 = A_0$. Let $V_0 = Z_0$ and assume that for each $\sigma < \alpha$ we have chosen Z_{σ} and V_{σ} such that: (1) $Z_{\sigma} = A_{\sigma}$ or $Z_{\sigma} = N \setminus A_{\sigma}$, (2) if $\gamma \le \sigma$ then $|V_{\sigma} \setminus Z_{\gamma}| < \aleph_0$ and $|V_{\sigma} \setminus V_{\gamma}| < \aleph_0$; and (3) if Γ is a finite subset of $\{Z_{\gamma}: \gamma \le \sigma\} \cup \{V_{\gamma}: \gamma \le \sigma\}$ then $\bigcap \Gamma$ is not sparse. These inductive hypotheses clearly hold when $\sigma = 0$.

If there is some finite subset Γ of $\{Z_{\sigma}: \sigma < \alpha\} \cup \{V_{\sigma}: \sigma < \alpha\}$ such that $\cap \Gamma \cap A_{\alpha}$ is sparse let $Z_{\alpha} = N \setminus A_{\alpha}$. Otherwise let $Z_{\alpha} = A_{\alpha}$. Let $\{W_n\}_{n=1}^{\infty}$ be the set of finite sequences in N where $W_n = \{r_{n,i}\}_{i=1}^{m(n)}$ and let $\{U_n\}_{n=1}^{\infty} = \{Z_{\sigma}: \sigma \le \alpha\} \cup \{V_{\sigma}: \sigma < \alpha\}$. Let $S_n = \bigcap_{k=1}^n U_k$.

Note that if Γ is a finite subset of $\{Z_{\sigma}: \sigma \leq \alpha\} \cup \{V_{\sigma}: \sigma < \alpha\}$ then \bigcap Γ is not sparse. To see this suppose instead there is a finite subset Γ such that \bigcap Γ is sparse. Then necessarily $\Gamma = \Pi \cup \{Z_{\alpha}\}$ where $\Pi \subseteq \{Z_{\sigma}: \sigma < \alpha\} \cup \{V_{\sigma}: \sigma < \alpha\}$ by inductive hypothesis (3). But then, by the choice of Z_{α} , one has a finite subfamily Δ of $\{Z_{\sigma}: \sigma < \alpha\} \cup \{V_{\sigma}: \sigma < \alpha\}$ such that \bigcap $\Delta \cap A_{\alpha}$ is sparse and one has $Z_{\alpha} = N \setminus A_{\alpha}$. But then, letting $\Gamma' = \Delta \cup \Pi$ one concludes that \bigcap Γ' is sparse, contradicting hypothesis (3).

Consequently each S_n is not sparse. By Lemma 2.9 for each pair of natural numbers (n, t) there exists a finite subset $F_{n,t}$ of S_t such that for each set $\{D_i\}_{i=1}^{m(n)}$ for which $F_{n,t} = \bigcup_{i=1}^{m(n)} D_i$ there is some i such that $(D_i \times D_i) \cap B(r_{n,t}) \neq \emptyset$. Let $V_\alpha = \bigcup_{t=1}^\infty \bigcup_{n=1}^t F_{n,t}$.

Hypothesis (1) is trivially satisfied. Let $\sigma \leq \alpha$. Then $Z_{\sigma} \geq S_k$ for some k and we have that $V_{\alpha} \setminus Z_{\sigma} \subseteq \bigcup_{t=1}^k \bigcup_{n=1}^t F_{n,t}$. (If t > k then $F_{n,t} \subseteq S_k \subseteq Z_{\sigma}$.) Therefore $|V_{\alpha} \setminus Z_{\sigma}| < \aleph_0$. Identically one sees that $|V_{\alpha} \setminus V_{\sigma}| < \aleph_0$ when $\sigma < \alpha$ so that the hypothesis (2) is satisfied.

It has already been shown that if Γ is a finite subset of $\{Z_{\sigma} : \sigma \leq \alpha\} \cup \{V_{\sigma} : \sigma < \alpha\}$ then $\bigcap \Gamma$ is not sparse. So to complete the induction it is only required to show that for such Γ , $\bigcap \Gamma \cap V_{\alpha}$ is not sparse. There is some k such that $\bigcap \Gamma \supseteq S_k$ so it indeed suffices to show that $S_k \cap V_{\alpha}$ is not sparse.

Suppose instead that there are some $\{D_i\}_{i=1}^m$ and $\{r_i\}_{i=1}^m$ such that $S_k \cap V_\alpha = \bigcup_{i=1}^m D_i$ and $(D_i \times D_i) \cap B(r_i) = \emptyset$ for each i. Then $\{r_i\}_{i=1}^m = W_n$ for some n. Let $t = \max\{n, k\}$ and let $D_i' = D_i \cap S_t$ for each i. Then $S_t \cap V_\alpha = \bigcup_{i=1}^m D_1'$ and $(D_1' \times D_1') \cap B(r_i) = \emptyset$ for each i. But $F_{n,t} \subseteq S_t \cap V_\alpha$ so that $(D_i' \times D_i') \cap B(r_i) \neq \emptyset$ for some i, a contradiction.

Thus each of the inductive hypotheses hold and we may choose Z_{α} and V_{α} for each $\alpha < \omega_1$. Let $p = \{Z_{\alpha} : \alpha < \omega_1\} \cup \{V_{\alpha} : \alpha < \omega_1\}$. By inductive hypotheses (1) and (3), p is an ultrafilter on N, and by hypothesis, (2) p is a P-point of $\beta N \setminus N$. By hypothesis (3), $(p, p) \in \text{cl } B(r)$ for each r in N so by Lemmas 2.1 and 2.2 $|\tau^{-1}(p, p)| = 2^c$.

The author is grateful to A. Blass for pointing out that 3.3 below is indeed a corollary to Theorem 3.2. The author's original proof involved a lemma approximately four times as complicated as Lemma 2.7.

3.3. COROLLARY. There exist distinct P-points p and q of $\beta N \setminus N$ such that $|\tau^{-1}(p,q)| = 2^c$.

PROOF. Let f be a permutation of N which takes the odd numbers onto the even numbers. Let f^{β} be the continuous extension of f from βN to βN and let $q=f^{\beta}(p)$ where $p\in\beta N\setminus N$ such that $|\tau^{-1}(p,p)|=2^c$. Then $q\neq p$ since f^{β} takes no point of βN to itself. For each r in N let $C(r)=\{(x,f(y)):(x,y)\in B(r)\}$. Since $(p,p)\in \operatorname{cl}_{\beta N\times\beta N}B(r)$ for each r one has $(p,q)\in\operatorname{cl}_{\beta N\times\beta N}C(r)$ for each r. Thus by Lemmas 2.1 and 2.2 one has $|\tau^{-1}(p,q)|=2^c$.

The author takes pleasure in thanking the referee for his constructive criticism and helpful suggestions.

REFERENCES

- 1. Andreas Blass, Orderings of ultrafilters, Thesis, Harvard University, Cambridge, Mass., 1970.
- 2. Leonard Gillman and Meyer Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 3. Neil Hindman, On P-like spaces and their product with P-spaces, Thesis, Wesleyan University, Middletown, Conn., 1969.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, LOS ANGELES, CALIFORNIA 90032