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PREIMAGES OF POINTS UNDER THE NATURAL MAP
FROM B(N x N) TO BN x BN

NEIL HINDMAN

ABsTRACT. This paper deals with the size of the preimages of
points of BN x BN under the continuous extension, 7, of the identity
map on N X N. It is concerned with those points (p, q) of BN x N
for which 7=*(p, ¢) is infinite and extends the work of Blass [1] who
thoroughly considered those points with finite preimages.

1. Introduction. In the construction of SN used here the points of
BN\N are free ultrafilters on N. The reader is referred to the Gillman and
Jerison textbook [2] for this construction and any unfamiliar terminology.

It is easily seen that if either p or ¢ is in N then [771(p, g)|=1. (See
Lemma 2.1 below.) In addition Blass [1] has shown the following, where
p and g are in BN\N. For any p, |77*(p, p)| =3 and equality holds if and
only if p is a Ramsey ultrafilter. (An ultrafilter p on N is Ramsey provided
whenever N is the union of pairwise disjoint subsets A4, either some 4,
is in p or there is some B in p such that |[BNA4,|=1 for each n. An ultra-
filter p is a P-point of BN\N provided for each countable subset {Z,} .2,
of p there is a member Z of p such that Z\Z, is finite for each n, so in
particular each Ramsey ultrafilter is a P-point of SN\N.) If p and g are
Ramsey and not isomorphic (i.e. there is no permutation of N whose
extension to BN takes p to q) then |77(p, g)|=2. He also shows, as-
suming the continuum hypothesis, that for every integer n bigger than 1
there exist p and g with |772(p, q)|=n. Both [3] and [1] contain the in-
formation that if |7~!(p, g)]=2 then p and ¢ are P-points of SN\N.

It is shown here that there exists a P-point p of SN\N such that
[77*(p, p)|=2° and that there exist distinct P-points p and g such that
[77X(p, g)|=2°. Both results assume the continuum hypothesis. (In fact
the existence of P-points of N\N has not been shown without the aid of
the continuum hypothesis.) It is also shown that there exists a point p of
BN\N such that |[77(p, q)|=2° for every g in SN \N.

2. Preliminary lemmas. Lemmas 2.1 and 2.2 are well known. Their
proofs are included for completeness.
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2.1. LeMMA. Let p and q be elements of SN and let n€ N. Then
|7 X(p, )| =n if and only if there exist n pairwise disjoint subsets of Nx N
such that (p, q) is in the closure in BN X BN of each.

PROOF. Necessity. Let {r;};_1=771(p, q) such that r;%r, when i#j.
Then there exists {4,}i-, such that 4, € r, for eachiand 4; "A;= & when
i#j. Suppose for some i that (p, q) ¢ clsyysn4,. Then there is a neighbor-
hood U of (p,q) in BN X BN such that UNA,=g. But then =1 (U) N
A;= g while 71(U) is a neighborhood of r; in (N x N).

Sufficiency. Let {4,};.; be a set of pairwise disjoint subsets of NxXN
such that (p,q) € Nia ClgnxsnA:: Now 7(clgyxmA:)2¢lgynpnA; for
each i. Thus, if i=n, one has some r, in 77(p, g) Nclyyy4;. If i%] then
A;NA;= 2 so r;#r;.

2.2. LeMMA. Let p and q be elements of BN. If |772(p, q)|Z R, then
I~ (p, Pl=2"

ProOF. Since |#(N X N)|=2¢ we only need show that [+~1(p, q)|=2°.
But 771(p, ¢) is an infinite compact subset of the F-space S(N x N) so by
14N of [2] it contains a copy of SN.

In the proofs of the main theorems one constructs ultrafilters p and ¢
on N such that (p, g) is in the closure of each of X, pairwise disjoint sub-
sets of NxN. Lemmas 2.1 and 2.2 then guarantee that |72(p, g)|=2°.

The author apologizes for the formalization in the following definition.
Intuitively it says that 4 has property S if for each m there is an n such
that each n-block of N contains an m-gap of A4.

2.3. DerINITION. Let AS N and let the variables m, n, z and x range
over N. A has property S if (Vm)(3n)(Vz)(3x)(z<x<x+m<z+n and
{x, x+1,--- , x+m}NA=2).

The easy proof of the following lemma is omitted.

2.4. LemMA. If A and B have property S then A UB has property S.

2.5. DEFINITION. Let reN. Z(r)={(m,n) e NXxN:rn<mZ=(r+1)n}
and B(r)=U {Z(s):s=2"1(2m—1) for some m in N}.

The set {B(r)},.~n forms the countable collection of pairwise disjoint
subsets of N X N referred to above.

2.6. LEMMA. Let AS N and let B be an infinite subset of N. If there is
some r in N such that (A X B) N\B(r)=& then A has property S.

PrOOF. Let m € N and let w € B such that w>m. Let n=27! - w and
let z € N. Let p be the least integer such that z=2"1(2p+1)w+w and let
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x=27"1(2p+3)w+1. Then

zS 2 2p+ W+ w <2 2p+ W< x<x+m
Sx+w—1=2"2Qp+3Ww+w
=2""2p—Dw+w+ 2w
=2"'2p—1w+w+n<z+n

(The last inequality holds because of the choice of p.) Now let k €
{0, 1,---,m}. If x+k were in 4 then (x+k, w) would be in (A X B)N
Z(27(2p+3)) hence in (AxB)NB(r). Thus {x,x+1,---, x+m}N
A= as desired.

All the machinery needed to prove Theorem 3.1 has now been devel-
oped. The rest of this section is needed to obtain pairs of P-points of
BN\N with large preimages.

2.7. LeMMA. Let {C.}y_, be a set of subsets of NX N and let A N.
If for each finite subset F of A there exists {D,};, such that F=\Jz_, D;
and, for each k, (D,x D,) NC,=2 then there exists {A}i-, such that
A== A, and, for each k, (A, X A,) NC,=2.

ProoOF. If A is itself finite there is nothing to prove. Otherwise let I'
be the set of all n-tuples (G,, G, - - -, G,) such that (1) each G, is a finite
subset of A and (2) whenever F is a finite subset of 4 which contains
Ui-1 G, there is a set {D,}r_, such that z-, D,=F and, for each k,
D,2G, and (D, xD)NC,=3.

Partially order I by agreeing that (G,, G,, - -+, G,)<(Hy, Hy, -+ - , H,)
provided G,< H, for each k and the first element of 4\{Jx-, G is in
Ut He

We first note that I' has no maximal element. Suppose instead that
(G,, G,, - - -, G,) is a maximal element of I" and let a be the first element
of A\Us=1 G, Foreachjand kin {1,2, - -+, n} let H; ;=G, if j#k and
let H;,=G,U{a} if j=k. If, for any j, (H;, H; 5, -, H,; ,) € [ then
(Gy, Gy, - - -, G,) is not maximal in I'. Consequently, for each j one has
(H; 1, H; 5, - -+, H; ) ¢ T'. That is, for each j there is a finite subset F; of
A containing Jg, H;; such that if F;=UJ;., D, and, for each k,
H; < D, then, for some k, (D, x D) NC,# . Let F=J;.; F;. Then
F2Jx=1 G V{a} and Fis a finite subset of 4. Since (G, G,, -+, G,) €
there exists a set { D, };—, such that F=|J;_, D, and, for each k, G, < D,
and D, x D, NC,= & . But then, for some, a € D,. For thisj one has F;=
Usk=1 (DNF;) and, for each k, H; ,< D, NF;and (D, NF;) X (D, NF;) N
C,= @, contradicting the choice of F;.

Note also that by the hypothesis of the lemma, (g, &, -, @)e Tl
so that I's# @& . Since the conclusion of Zorn’s lemma fails and since I's## @
there must be an infinite chain in ', say {(G,,, G5, ", G, )}
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Foreachkin{l,2, -, n}let A,=J;Z; G; ;. Then A=J;, A, since the
jth element of 4 must be in (Jg-1 G, ;. And (4, X 4,) NC,,.= & for each k
since (G; . XG;,) NC,=@ for each j and k and since G; S Gy 1

It may be noted that in the above proof one can, by suitably restricting
T, appeal to Konig’s infinity lemma instead of Zorn’s lemma to establish
the infinite chain in I'.

2.8. DEFINITION. A subset 4 of N is sparse if there exist nin N, a set
{A;}7, of subsets of N and a subset {r,};—; of N such that A={J;; 4,
and (4,XA4,) NB(r)=2.

Note that the finite union of sparse sets is sparse. Note also that N is
not sparse. (If it were one would have N=J;; 4; with (4,x4,)N
B(r)=@ . Then by Lemma 2.6 each A4, would have property S and hence,
by Lemma 2.4, N would have property S, which is impossible.)

2.9. LemMA. If A is not sparse then for each finite sequence {r;};_, in N
there is a finite subset F of A such that for each {D};_, for which F=
U1 D; one has some i such that (D;x D) N\B(r,))# &.

PROOF. Suppose there exists {r,};—; such that each finite subset F of A
can be written F=\J7, D, with (D,x D,) N\B(r;)=@ for each i. Then
by Lemma 2.7 there exists {4,};—; such that A={J;_; 4, and (4, X 4,)N
B(r;)= @ for each i. Hence A is sparse, a contradiction.

3. Points with infinite preimages. The first theorem provides without
the benefit of the continuum hypothesis, an abundance of pairs (p, g) in
AN x BN with infinite preimages.

3.1. THEOREM. There is a point p of BN\N such that |7='(p, q)|=2¢ for
every point q in BN\N.

PrOOF. By Lemma 2.4, the sets with property S constitute a proper
ideal of subsets of N, so their complements constitute a proper filter.
By extending this filter to an ultrafilter, we obtain a point p of SN\N, no
elements of which have property S.

Now let g € BN\N and let Ze p, Weg and r e N. Then W is infinite
and Z does not have property S so by Lemma 2.6 (ZXW)NB(r)# 2.
Thus (p,q) € clyyypsxB(r) foreach r in N and so, by Lemmas 2.1 and 2.2,
|7 (p, )| =2

It should be observed that, by taking C(r)={(x, y):(y, x) € B(r)}, one
also has that |7~1(q, p)|=2°¢ where p is the point constructed above and ¢4
is any point in SN\N.

It should also be noted that the point p constructed in Theorem 3.1
cannot be a P-point of SN\N. Indeed any P-point of BN\N must have
some element with property S. (To see this let A, ,={k+rn:r e N} for
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eachnin N and kin {1, 2, - - -, n}. Then any ultrafilter p on N has, for
each n, some k such that 4,, . € p. Let, foreachn, Z,=A, , where 4, ;. € p.
If p is in addition a P-point of SN\N there is a member Z of p such that
Z\Z, is finite for each n. This Z must have property S.)

One might then guess, since points with the smallest possible pre-
images must be P-points, that all pairs of P-points would have finite
preimages. The following theorem shows that this is not the case, provided
the continuum hypothesis is assumed.

3.2. THEOREM. Assume the continuum hypothesis. There exists a
P-point p of BN\N such that |[77(p, p)|=2°.

ProoF. Index the subsets of N by the ordinals less than w,, writing
P(N)={Ay}s<w, If A, is sparse let Z,=N\A4,. Otherwise let Z,=A4,. Let
Vo=Z, and assume that for each o <« we have chosen Z, and ¥, such
that: (1) Z,=A4,or Z,=N\4,, (2) if y=cthen [V, \Z | <R;and [V \V,|<
X,; and (3) if T is a finite subset of {Z,:y <6} U{V,:y<0c} then N T
is not sparse. These inductive hypotheses clearly hold when ¢=0.

If there is some finite subset I' of {Z_ :0<a} U{V,:6<a} such that
N I'nA, is sparse let Z,=N\A,. Otherwise let Z,=A4,. Let {W,}2, be
the set of finite sequences in N where W,={r, }7" and let {U,}2,=
{Z,: 020} U{V,:0<a}. Let S,=Nio1 U,

Note that if I" is a finite subset of {Z,:0=a} U{V,:0<«} then () T is
not sparse. To see this suppose instead there is a finite subset I" such that
(N I' is sparse. Then necessarily I'=I1 U{Z,} where [1<{Z_ :6<a} U
{V,:0<a} by inductive hypothesis (3). But then, by the choice of Z,, one
has a finite subfamily A of {Z :0<a} U{V,:0<a} such that N ANA4,
is sparse and one has Z,=N\A,. But then, letting I"'=A UII one con-
cludes that () I'" is sparse, contradicting hypothesis (3).

Consequently each S, is not sparse. By Lemma 2.9 for each pair of
natural numbers (n, 1) there exists a finite subset F, , of S, such that for
each set {D,}7{ for which F, ,=7{" D, there is some i such that
(D;x D) NB(r, )# 2. Let V,=U2y Uler F oo

Hypothesis (1) is trivially satisfied. Let 6 <a«. Then Z,= S, for some k
and we have that V,\Z, < Ui-, U%e F,... (If 1>k then F, ,£S.SZ,.)
Therefore [V,\Z,| < X,. Identically one sees that |V,\V,| <X, when <«
so that the hypothesis (2) is satisfied.

It has already been shown that if I" is a finite subset of {Z,:0=«} U
{V,:0<0a} then () I' is not sparse. So to complete the induction it is only
required to show that for such I', (| ' N ¥, is not sparse. There is some
k such that (| I'= S, so it indeed suffices to show that S, NV, is not
sparse.
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Suppose instead that there are some {D;};Z; and {r,}iz; such that
S, NV,=UZ: D, and (D;x D) NB(r,)=@ for each i. Then {r;} =W,
for some n. Let t=max{n, k} and let D;=D, NS, for each i. Then S, N
V.=iz1 D1 and (D;x D;) NB(r))=g for each i. But F, ,=S5,NV, so
that (D;x D;) NB(r;)# @ for some i, a contradiction.

Thus each of the inductive hypotheses hold and we may choose Z,
and V, for each a<w,. Let p={Z,:a<w,} U{V,:a<w,}. By inductive
hypotheses (1) and (3), p is an ultrafilter on N, and by hypothesis, (2) p is
a P-point of BN\N. By hypothesis (3), (p, p) € cl B(r) for each r in N so by
Lemmas 2.1 and 2.2 [+7(p, p)|=2°.

The author is grateful to A. Blass for pointing out that 3.3 below is
indeed a corollary to Theorem 3.2. The author’s original proof involved
a lemma approximately four times as complicated as Lemma 2.7.

3.3. CoROLLARY. There exist distinct P-points p and q of BN\N such
that |771(p, q)| =2°.

PrOOF. Let f be a permutation of N which takes the odd numbers
onto the even numbers. Let f# be the continuous extension of f from
BN to BN and let g=f*(p) where p € BN\N such that |7~2(p, p)|=2¢. Then
g#p since f* takes no point of AN to itself. For each r in N let C(r)=
{(x, fO)): (x, y) € B(r)}. Since (p, p) € clgyygnB(r) for each r one has
(p> q) € clgyypnC(r) for each r. Thus by Lemmas 2.1 and 2.2 one has
I7p, )| =2

The author takes pleasure in thanking the referee for his constructive
criticism and helpful suggestions.
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