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ABSTRACT. Hall and Higman’s Theorem B is proved by con-
structing the representation in the group algebra. This proof is
independent of the field characteristic, except in one case.

Let R be an extra special r group. Suppose C=<Aut(R) is cyclic, ir-
reducible faithful on R/Z(R), and trivial on Z(R). The group CR and its
representation theory have been widely studied and are of some importance.
Let k be a field of characteristic g#r containing a splitting field for R.
Then any faithful irreducible k[R]-module V is absolutely irreducible and
extends to CR.

Hall and Higman [3] studied V| when C was a ¢ group. Their result is
proved using inequalities on the dimension of Hom,¢;(V, V). This proof
also works if we only know g| |C|. The central ideal of this proof also
works when (g, |C|)=1 [5]. However, the count is quite different. There are
character proofs of the result when (g, |C|)=1 [1]. Thompson gave a very
pretty proof of Hall and Higman’s original result using vertices and
sources [4].

These proofs suffer from one or more of the following difficulties:

(1) They are all tied to the characteristic g.

(2) When g||C| they depend upon knowing all indecomposable k[C]-
modules.

(3) They are indirect in that they do not construct a representation of
CR.

The theorem in all cases is that V|, is a direct sum of copies of the regular
C-module and one other module U isomorphic to k[C]/k[C]F where F=
Szc x. The number of regular modules and the appearance of U are
completely independent of the field characteristic. This makes (1) a strong
objection. Objection (2) becomes important if we drop the condition that
C be cyclic. Finally, a “useful” construction of a given module is often
better than no construction at all.
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The object of this paper is to remedy these three objections for odd
primes r. The representation of CR on V'is explicitly constructed independ-
ent of field characteristic. Then its restriction to C is studied. If |R|=r?+!
then it is shown that V| contains (r*+1)/|C|—1 copies of the regular C-
module and one copy of k[C]/k[C]F.

I. A remark on central simple algebras.

(1.1) Suppose k is a field and A is a central simple algebra over k of
dimension t2. Assume B is a commutative quasi-Frobenius subalgebra with 1.
Let V be an irreducible A-module. Then V |z~ gB+ U where B is B+ con-
sidered as a left B-module and U is some complementary B-module.

The proof is easy. Since B is quasi-Frobenius, ;B is injective. Now
B*< A* so that 4A|g~ gB®W for some B-module W. The subalgebra B is
commutative. So in a complete decomposition of zB intoindecomposables,
each indecomposable summand appears with multiplicity one. For some
s|t, 4A=~sXx V where V is the irreducible 4-module uniquely determined
up to isomorphism. Using the Krull-Schmidt theorem to compare com-
plete decompositions of the isomorphic modules ;B®W and sx V| we
discover that gB is isomorphic to a summand of ¥|p.

(1.2) If in (1.1) the dimension of B is t then V|~ pB.

(1.3) Suppose k is a field and g(x) € k[x] has positive degree. Then
k([x}/(g(x)) is a quasi-Frobenius algebra.

This is well known. See [2, Section 58, Problem 2(c)].
I1. A nonsingular matrix.

(2.1) Let r be an odd prime and K=GF(r). Let V be an eZ1 dimensional
vector space over K and f:V X V—K a nonsingular symmetric form.

Since Z|rZ=GF(r) for the integers Z, we may imagine that each a € K
is a least residue in Z.

(2.2) If k is a field of characteristic g5r containing a primitive rth root
of unity { then the matrix M =[], prexxx is nonsingular.

Let N=[{"**]. Then the (B, y) entry of MN is
Z gﬂ:—ay — Z g(ﬁ—v)a =0

unless f=y in which case it is 7. So MN=rI where I is the identity. Since
r#0 in k, M has inverse r-1N.

(2.3) If kis a field of characteristic g7 r containing a primitive rth root of
unity { then the matrix M=[{'""), .y »v is nonsingular.
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We proceed by induction on dim V. If dim V=1 then f (au, fu)=ofu
for some u#0 in K so M is the matrix of (2.2) with {u in place of { and
(2.3) holds in this case.

Suppose dim V'=e and (2.3) holds for all spaces of smaller dimension.
Let {v,, - - - , v,} be an orthogonal basis for V. Such a basis exists since r is

odd. Let U=(v,, * - - , v,). Now f (v, v)=p. Set B=[{***]. Then we may
arrange M into blocks

M= [Cf(av1+u.ﬁvx+v)]

= [{aﬂu+f(u.v)] —_ [Bzf(u.v)]
=B® [Cﬂum)](u.v)eUxU’

So our matrix is formed as a Kronecker product. Now dim U=e—1 so the
second matrix in the product is nonsingular. The first matrix is just the
matrix of (2.2) for some primitive root; hence is nonsingular. Therefore M
is nonsingular.

As a corollary we obtain the following:

(2.4) Let K=GF(r®). Let T' € K*, Tr: K—K the trace map, V=K+*, and
S, v)=Tr(Tw). Let { be a primitive rth root in k of characteristic q#r.
If¢.ek,ucKand S, $,0""=0 for all v € K, then all $,=0

The ¢,’s give a linear dependence on the columns of M in (2.3). So this
is obvious.

III. The group. Let r be an odd prime and e=1 an integer. Let K=
GF(r), K=GF(r), and K= GF(r*). Let ¢ be the Galois group of K/K
and ¢ € & the element of order twoin &. Let u € K+ be of order re+1. Set
v=p—u. For u, v e K+ set

h(u, v) = 27 Tr(v[uv® — uv])

where Tr: K—K is the trace > map.
Note that v[uv”’—u"v] € K, the fixed field of ¢. Thus # is a nonsingular
alternating form on K+. Let R=K*x K*+. For u, §), (v, &) € R set

w, D@, &) = (u + v, h(w,v) + L + &)

This multiplication makes R into an extra special r group of exponent r
and order r2t.

Let C=(u). Now C acts as automorphisms of R by
W, 0)*= (ux,?) forxeC, (u,{)eR.
We let G=CR be the semidirect product of R by C.
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If Go=C,R, where R, is a normal extra special r subgroup of G, with
Z(Ry)=Z(G,) and C, is a cyclic r’ group irreducible on R(/Z(R,) then G,
is isomorphic to a subgroup of G. This fact seems to be well known. In
any case it is a straightforward computation.

IV. The group algebra of CR. Let k be a field of characteristic g7r
which contains a primitive rth root of 1.

We now state some facts about the group algebra of R overk. Let Abe a
primitive rth root of unity in k. If z=(0, 1) € R then set

4.1 E=r(A 4+ %24+ A% 42
and
2w, ))=0 if u0,
=rA if u=0.
Then E is the primitive central idempotent of k[R] belonging to the
irreducible character y. Also k[R]E is a central simple algebra of dimension

r2e over k.
Let c € C¥# and set

0, = {(v, —h(v*(c — 1), 1)) | v € K¥)

and
4.2) K, =—-r—° z xE.
ze0c
4.3) If x € R and c € C¥ then K x*=xK,.

Before starting we note a few properties of the form 4. If u, v e K then
h(u, v) = h(®, u®) = —h(v, u) = hw®, 1) = —h(wu?, 1).

We let h(u)=h(u, 1). There should be no confusion since the two A’s are
related and functions of different numbers of variables. Now h(u) is a
nontrivial K-linear functional from K to K.

For x=(u, §), we compute

—rx7 K xt = (u, 0) (v, —h(vw?[c — 117)(u, 8)°E
= (—u, =8)(v, —h(v*[c — 17)(uc, 6)E
= > (t, =h([t — u(c — D[t — u(c — DI*(c —

+ ut — u(c — 1))* — [t — u(c — Dlu®c™ + uu®c))E.
Here we have substituted t=v+u(c—1). Proceeding further,

= > (1, —h(tr*(c — 1)™))O0, —h(uu®))E.
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But uu? € K so h(uu®)=0. Thus —rex~1K,x*=—rK,. This proves (4.3).
We now compute K,K, for ¢, d € C*.

rK K, = > (u, —h(uu®(c — 1)™) > (v, —h(w*(d — 1)™)E
= Zu:(u + v, —h(uu®(c — l)i1 + v*(d — 1) — wP))E.
Let t=u+v ::d compute,
= tz'v(t, —h(tt*(c — 1) + to?(c — 1) — vt®(c — 1)
+ 0?[1 + (¢ — )7 + (d — DTD)E.

()

(4.4) For ce C¥ K.,K,..=E.
From our computation of X K, we obtain,
rK K = D (t, —h(tt*(c — 1) + ¥ — 1) — vr¥(c — 1)
+ o[l + (= D7+ (7 = D)E
= > (t, —h(tt*(c — 1))
t
- > (0, —h(tr?(c™* — 1) — v¥(c — )™)E.
Now i
¥ — 1) —ot¥(c — 1) = [t(c — D)? — oft(cr — 1)

Set A(t)=t(c*—1)"1. Then the second term of the above expression is

> (0, —h(A(t)r® — A(t)*v))E.

v

But —A(4(t)v*— A()*v)=f(v) is a nontrivial K-linear map of K+ onto K
provided ¢7£0. But then the sum is

> (0, f(W)E = r*1> (0,0)E ift 0,

v acK
= r*%(0, 0)E ift=0.
Now >, (0, ®)E=>, A*E=0. So our sum is zero unless =0. Then we get
r**K K. = r*°E.
We now have the obvious corollary:
(4.5) If c € C¥ then K, is invertible in k[R)E and has inverse equal to K -1.
Let Ky=E.
(4.6) The map cx—K_xE is a representation of CR in k[R]E.
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The collection {(v, 0)E|v € K } is a k-basis for k[R]E. Also k[R]E is a
central simple algebra over k. Thus cx—K_xE is a projective representation
of CR with a factor set n by (4.3) and (4.5). Further, n is trivial on R. That
is, K,-1(v, 0)K,=(v, 0)° all v € K.

But then K, K,=n(c, d)K,,. We continue our earlier computation from
(*) for the case d#c™t.

r*K K, = > (t, —h(tt*(cd — 1)™))

>0, —h(tt*[(c — 1) — (cd — 7] + 0¥t — 1)
—vtc — )P+ 0?1l + (c — 1)+ (d — 1)))E.
Put the last sum equal to A’(¢). Then
= > (1, —h(tt*(cd — 1)) A'()E
t
= —rn(c,d) > (t, —h(tt*(cd — 1) ™)E.
t

Since A4'(7) is a sum of elements from Z(R), A'(t)E=a(t)E where a(t) € k.
Further, {(¢, —h(tt*(cd—1)"Y))E |t € K} is a k-basis for k[R]E. Therefore
—ren(c, d)y=a(t) for all values of ¢. In particular,

—r°n(c, d)E = a(0)E
= > (0, —h(o*[l + (c — )" + (d — )'D)E.
The map v—uv* is the norm map N: K*— K. The kernel has order re+1.

Therefore

—rn(e, )E = E + > (0, —h(vo®[1 + (c — 1) 4+ (d — DT']D)E

veK*
=E+ @+ 1) 2 (0, —h@[l +(c— 1) +(d—=DTDE
uek>
= —rE4(r*+ 1) > (0, —h(u[l +(c— 1) +(d — 1) D)E.
uek

Now —h(u[l+(c—1)"1+(d—1)"1])=f(u) is a nontrivial K-linear map of
K to K since dsc~1. Thus

—rn(c, dE = —r°E + (r + 1) > (0, f())E

= —rE+r(r+ ])Z(O, «)E = —r°E.

aek
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Thus n(c, d)=1 if ds%c~*. By (4.4) and the definition of K; we know that

n(l,¢) =n(c, 1) =n(c,c)=n(cc)=1.

So n is the trivial factor set and we have an ordinary representation.
4.7 > K,=—E.

As usual, we compute

—r Z K, = Z(v —h(w?(c — 1) )E

ceC¥
= (v,0) > (0, —h(vo*(c — 1) ™))E.
Fix v7#0. Compute | c
—h(wo?(c — 1)) = =Tr@’[(c — D7 — (¢ = D7D
= —Tr(27 (¢ + 1)/(c — 1))
Next we show that the map c—»(c+1)/(c—1) is a one-one map of C#

onto K. Note that (»(c+1)/(c—1))*=wv(c+1)/(c—1) so the map is into K.
Since |C#|=re¢=|K|, if the map is one-one, it is onto. So suppose

C+1 d+1’ C,dEC#.
c -1 d-1
Then (c+1)(d—1)=(d+1)(c—1) or 2(c—d)=0. But r is odd so c=d.
Thus the map is one-one onto K.
Returning again to our computation

—r z K, —Z(v, 0) 2, (0, —Tr(2"vv*u))E

ceC uek

= r(0, 0)E + > (v, 0r** > (0, ))E = r’E

v#0 ack

This proves (4.7).
4.8) {Kclc € C*} is a linearly independent set of vectors in k[R]E.

Suppose there are constants y, € k so that > . .c# v .K,=0. Then

0=—r Z vKe= > v, —h(uw*c — 1Y )E

ceC ceC™ ;veK

=20 Z (0, —h(w?(c — 1)E.

vek
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But {(v, 0)E|v € K} is a k-basis for k[R]E. Therefore
> 90, —h(vv*(c — 1)™)E = 0
c
for all » € K. But v—0v? is the norm map from K to K and is onto. So

> 90, —h(a(c — )™)E =0
for all « € K. i
Next look at
h(a(c — )™ =271 Tr(vaf(c — 1) — (¢t = D)
= 27 Tr(av(c + 1)/(c — 1)).

In (4.7) we saw that the map c—v(c+1)/(c—1) was one-one from C# onto
K. Let =pB(c)=v»(c+1)/(c—1). Then we may take yp,=vp)=%; and

0 =2 v;(0,f(x BYE
BeK

foralla € 2( where f(«, f)=—2" Tr(«f) is a nonsingular symmetric form
from Kx K to K. That is,

0=> yp;A’? forallaeKk.
ﬂei
By (2.4) all y=0. This proves (4.8).

(4.9) Define ®(c)=K, and extend linearly to k[C). Then @ is an algebra
homomorphism with kernel k[C]F where F=3 ..c x.

This is an easy consequence of (4.6), (4.7), and (4.8).

(4.10) THEOREM. Let V be an irreducible k[CR]-module nontrivial on
Z(R). Then there is a k[C]-module W so that

V]o = (ICYKICIF) &, 7.

Let E be the primitive central idempotent of k[R] such that EV5(0).
For appropriate choice of 4 in (4.1), E is given there. Let B be the k-
subalgebra generated by the K,’s. Let U be an irreducible k[R] module
with EU##(0). Then U is a k[CR] module if we let ¢ € C act as K,. By (1.2),
(1.3) and (4.9), U|c~3B.

So by [2, (51.7)] there is a CR/R~C-module W such that

Ve U® W or Vo= (K[CYKICIF) ® W|c.

We have the following easy corollary.
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(4.11) CoROLLARY. Let D be a subgroup of C and V an irreducible
k[CR]-module faithful on Z(R). Then there is a k[D}-module W so that

V|p =~ (dim W)((r* + 1)/|D| — 1)k[D] & (k[D)/k[D]F,) ® W
where Fo=7 ..p X.

We have completed the proof of the theorem. This construction need
not be confined to k. With modification it gives a representation of CR in
0, the ring of p-adic integers p#r, in k when k is an algebraic number
field.

Is there a characteristic free proof for r=2?
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