HALL-HIGMAN TYPE THEOREMS. IV

T. R. BERGER¹

ABSTRACT. Hall and Higman's Theorem B is proved by constructing the representation in the group algebra. This proof is independent of the field characteristic, except in one case.

Let R be an extra special r group. Suppose $C \subseteq Aut(R)$ is cyclic, irreducible faithful on R/Z(R), and trivial on Z(R). The group CR and its representation theory have been widely studied and are of some importance. Let k be a field of characteristic $q \neq r$ containing a splitting field for R. Then any faithful irreducible k[R]-module V is absolutely irreducible and extends to CR.

Hall and Higman [3] studied $V|_C$ when C was a q group. Their result is proved using inequalities on the dimension of $\operatorname{Hom}_{k[C]}(V, V)$. This proof also works if we only know q||C|. The central ideal of this proof also works when (q, |C|) = 1 [5]. However, the count is quite different. There are character proofs of the result when (q, |C|) = 1 [1]. Thompson gave a very pretty proof of Hall and Higman's original result using vertices and sources [4].

These proofs suffer from one or more of the following difficulties:

- (1) They are all tied to the characteristic q.
- (2) When q | |C| they depend upon knowing all indecomposable k[C]-modules.
- (3) They are indirect in that they do not construct a representation of CR.

The theorem in all cases is that $V|_C$ is a direct sum of copies of the regular C-module and one other module U isomorphic to k[C]/k[C]F where $F = \sum_{x \in C} x$. The number of regular modules and the appearance of U are completely independent of the field characteristic. This makes (1) a strong objection. Objection (2) becomes important if we drop the condition that C be cyclic. Finally, a "useful" construction of a given module is often better than no construction at all.

Received by the editors February 11, 1972.

AMS (MOS) subject classifications (1970). Primary 20C15, 20C20; Secondary 16A64, 20H20.

Key words and phrases. Hall-Higman Theorem B, representation theory, group theory, group algebra, modular representation.

¹ This research was partially supported by NSF grant GP-29224X.

The object of this paper is to remedy these three objections for odd primes r. The representation of CR on V is explicitly constructed independent of field characteristic. Then its restriction to C is studied. If $|R| = r^{2e+1}$ then it is shown that $V|_C$ contains $(r^e+1)/|C|-1$ copies of the regular C-module and one copy of k[C]/k[C]F.

I. A remark on central simple algebras.

(1.1) Suppose k is a field and A is a central simple algebra over k of dimension t^2 . Assume B is a commutative quasi-Frobenius subalgebra with 1. Let V be an irreducible A-module. Then $V|_{B} \cong {}_{B} B \dotplus U$ where ${}_{B} B$ is B^+ considered as a left B-module and U is some complementary B-module.

The proof is easy. Since B is quasi-Frobenius, ${}_BB$ is injective. Now $B^+ \subseteq A^+$ so that ${}_AA|_B \cong {}_BB \oplus W$ for some B-module W. The subalgebra B is commutative. So in a complete decomposition of ${}_BB$ into indecomposables, each indecomposable summand appears with multiplicity one. For some $s|t, {}_AA \cong s \times V$ where V is the irreducible A-module uniquely determined up to isomorphism. Using the Krull-Schmidt theorem to compare complete decompositions of the isomorphic modules ${}_BB \oplus W$ and $s \times V|_B$ we discover that ${}_BB$ is isomorphic to a summand of $V|_B$.

- (1.2) If in (1.1) the dimension of B is t then $V|_{B} \simeq_{B} B$.
- (1.3) Suppose k is a field and $g(x) \in k[x]$ has positive degree. Then k[x]/(g(x)) is a quasi-Frobenius algebra.

This is well known. See [2, Section 58, Problem 2(c)].

II. A nonsingular matrix.

(2.1) Let r be an odd prime and K=GF(r). Let V be an $e \ge 1$ dimensional vector space over K and $f: V \times V \rightarrow K$ a nonsingular symmetric form.

Since $\mathbb{Z}/r\mathbb{Z} \cong GF(r)$ for the integers \mathbb{Z} , we may imagine that each $a \in K$ is a least residue in \mathbb{Z} .

(2.2) If k is a field of characteristic $q \neq r$ containing a primitive rth root of unity ζ then the matrix $M = [\zeta^{\alpha\beta}]_{(\alpha,\beta) \in K \times K}$ is nonsingular.

Let $N = [\zeta^{-\alpha\beta}]$. Then the (β, γ) entry of MN is

$$\sum_{\alpha} \zeta^{\beta\alpha-\alpha\gamma} = \sum_{\alpha} \zeta^{(\beta-\gamma)\alpha} = 0$$

unless $\beta = \gamma$ in which case it is r. So MN = rI where I is the identity. Since $r \neq 0$ in k, M has inverse $r^{-1}N$.

(2.3) If k is a field of characteristic $q \neq r$ containing a primitive rth root of unity ζ then the matrix $M = [\zeta^{f(u,v)}]_{(u,v) \in V \times V}$ is nonsingular.

We proceed by induction on dim V. If dim V=1 then $f(\alpha u, \beta u) = \alpha \beta \mu$ for some $\mu \neq 0$ in K so M is the matrix of (2.2) with $\zeta \mu$ in place of ζ and (2.3) holds in this case.

Suppose dim V=e and (2.3) holds for all spaces of smaller dimension. Let $\{v_1, \dots, v_e\}$ be an orthogonal basis for V. Such a basis exists since r is odd. Let $U=\langle v_2, \dots, v_e \rangle$. Now $f(v_1, v_1)=\mu$. Set $B=[\zeta^{\alpha\beta\mu}]$. Then we may arrange M into blocks

$$M = [\zeta^{f(\alpha v_1 + u, \beta v_1 + v)}]$$

$$= [\zeta^{\alpha \beta \mu + f(u, v)}] = [B\zeta^{f(u, v)}]$$

$$= B \otimes [\zeta^{f(u, v)}]_{(u, v) \in U \times U}.$$

So our matrix is formed as a Kronecker product. Now dim U=e-1 so the second matrix in the product is nonsingular. The first matrix is just the matrix of (2.2) for some primitive root; hence is nonsingular. Therefore M is nonsingular.

As a corollary we obtain the following:

(2.4) Let $\tilde{K} = GF(r^e)$. Let $\Gamma \in \tilde{K}^{\times}$, $Tr: \tilde{K} \to K$ the trace map, $V = \tilde{K}^+$, and $f(u, v) = Tr(\Gamma uv)$. Let ζ be a primitive rth root in k of characteristic $q \neq r$. If $\phi_u \in k$, $u \in \tilde{K}$ and $\sum_u \phi_u \zeta^{(fu,v)} = 0$ for all $v \in \tilde{K}$, then all $\phi_u = 0$.

The ϕ_u 's give a linear dependence on the columns of M in (2.3). So this is obvious.

III. The group. Let r be an odd prime and $e \ge 1$ an integer. Let K = GF(r), $\tilde{K} = GF(r^e)$, and $\hat{K} = GF(r^{2e})$. Let \mathscr{G} be the Galois group of \hat{K}/K and $\phi \in \mathscr{G}$ the element of order two in \mathscr{G} . Let $\mu \in \hat{K}^+$ be of order $r^e + 1$. Set $v = \mu - \mu^{-1}$. For $u, v \in \hat{K}^+$ set

$$h(u, v) = 2^{-1} \operatorname{Tr}(v[uv^{\phi} - u^{\phi}v])$$

where $\operatorname{Tr}: \tilde{K} \rightarrow K$ is the trace map.

Note that $v[uv^{\phi}-u^{\phi}v] \in \tilde{K}$, the fixed field of ϕ . Thus h is a nonsingular alternating form on \hat{K}^+ . Let $R = \hat{K}^+ \times K^+$. For $(u, \zeta), (v, \xi) \in R$ set

$$(u, \zeta)(v, \xi) = (u + v, h(u, v) + \zeta + \xi).$$

This multiplication makes R into an extra special r group of exponent r and order r^{2e+1} .

Let $C = \langle \mu \rangle$. Now C acts as automorphisms of R by

$$(u, \zeta)^x = (ux, \zeta)$$
 for $x \in C$, $(u, \zeta) \in R$.

We let G=CR be the semidirect product of R by C.

If $G_0=C_0R_0$ where R_0 is a normal extra special r subgroup of G_0 with $Z(R_0)=Z(G_0)$ and C_0 is a cyclic r' group irreducible on $R_0/Z(R_0)$ then G_0 is isomorphic to a subgroup of G. This fact seems to be well known. In any case it is a straightforward computation.

IV. The group algebra of CR. Let k be a field of characteristic $q \neq r$ which contains a primitive rth root of 1.

We now state some facts about the group algebra of R over k. Let λ be a primitive rth root of unity in k. If $z=(0, 1) \in R$ then set

(4.1)
$$E = r^{-1}(\lambda^{r-1} + \lambda^{r-2}z + \cdots + \lambda z^{r-2} + z^{r-1})$$

and

$$\chi((u,\zeta)) = 0 \quad \text{if} \quad u \neq 0,$$
$$= r^e \lambda^{\zeta} \quad \text{if} \quad u = 0.$$

Then E is the primitive central idempotent of k[R] belonging to the irreducible character χ . Also k[R]E is a central simple algebra of dimension r^{2e} over k.

Let $c \in C^{\#}$ and set

$$\mathcal{O}_c = \{ (v, -h(vv^{\phi}(c-1)^{-1}, 1)) \mid v \in \hat{K}^+ \}$$

and

$$(4.2) K_c = -r^{-e} \sum_{x \in \mathcal{Q}_c} x E.$$

(4.3) If
$$x \in R$$
 and $c \in C^{\#}$ then $K_c x^c = xK_c$.

Before starting we note a few properties of the form h. If $u, v \in \hat{K}$ then

$$h(u, v) = h(v^{\phi}, u^{\phi}) = -h(v, u) = h(uv^{\phi}, 1) = -h(vu^{\phi}, 1).$$

We let h(u)=h(u, 1). There should be no confusion since the two h's are related and functions of different numbers of variables. Now h(u) is a nontrivial K-linear functional from \hat{K} to K.

For $x=(u, \delta)$, we compute

$$\begin{split} -r^{e}x^{-1}K_{c}x^{c} &= \sum_{v} (u, \delta)^{-1}(v, -h(vv^{\phi}[c-1]^{-1}))(u, \delta)^{c}E \\ &= \sum_{v} (-u, -\delta)(v, -h(vv^{\phi}[c-1]^{-1}))(uc, \delta)E \\ &= \sum_{t} (t, -h([t-u(c-1)][t-u(c-1)]^{\phi}(c-1)^{-1} \\ &+ u[t-u(c-1)]^{\phi} - [t-u(c-1)]u^{\phi}c^{-1} + uu^{\phi}c^{-1}))E. \end{split}$$

Here we have substituted t=v+u(c-1). Proceeding further,

$$= \sum_{i=0}^{\infty} (t_i - h(tt^{\phi}(c-1)^{-1}))(0_i - h(uu^{\phi}))E.$$

But $uu^{\phi} \in \tilde{K}$ so $h(uu^{\phi}) = 0$. Thus $-r^{e}x^{-1}K_{e}x^{e} = -r^{e}K_{e}$. This proves (4.3). We now compute $K_{e}K_{d}$ for $c, d \in C^{\#}$.

$$r^{2e}K_cK_d = \sum_{u} (u, -h(uu^{\phi}(c-1)^{-1})) \sum_{v} (v, -h(vv^{\phi}(d-1)^{-1}))E$$

= $\sum_{u,v} (u+v, -h(uu^{\phi}(c-1)^{-1}+vv^{\phi}(d-1)^{-1}-uv^{\phi}))E$.

Let t=u+v and compute,

$$(*) = \sum_{t,v} (t, -h(tt^{\phi}(c-1)^{-1} + tv^{\phi}(c^{-1} - 1)^{-1} - vt^{\phi}(c-1)^{-1} + vv^{\phi}[1 + (c-1)^{-1} + (d-1)^{-1}]))E.$$

$$(4.4) \ For \ c \in C^{\#}, \ K_c K_{c^{-1}} = E.$$

From our computation of K_cK_d we obtain,

$$\begin{split} r^{2e}K_cK_{c^{-1}} &= \sum_{t,v} (t, -h(tt^{\phi}(c-1)^{-1} + tv^{\phi}(c^{-1}-1)^{-1} - vt^{\phi}(c-1)^{-1} \\ &+ vv^{\phi}[1 + (c-1)^{-1} + (c^{-1}-1)^{-1}]))E \\ &= \sum_t (t, -h(tt^{\phi}(c-1)^{-1})) \\ &\cdot \sum_t (0, -h(tv^{\phi}(c^{-1}-1)^{-1} - vt^{\phi}(c-1)^{-1}))E. \end{split}$$

Now

$$tv^{\phi}(c^{-1}-1)^{-1}-vt^{\phi}(c-1)^{-1}=[t(c^{-1}-1)^{-1}]v^{\phi}-v[t(c^{-1}-1)^{-1}]^{\phi}.$$

Set $A(t)=t(c^{-1}-1)^{-1}$. Then the second term of the above expression is

$$\sum_{v} (0, -h(A(t)v^{\phi} - A(t)^{\phi}v))E.$$

But $-h(A(t)v^{\phi}-A(t)^{\phi}v)=f(v)$ is a nontrivial **K**-linear map of \hat{K}^+ onto **K** provided $t\neq 0$. But then the sum is

$$\sum_{v} (0, f(v))E = r^{2e-1} \sum_{\alpha \in K} (0, \alpha)E \quad \text{if } t \neq 0,$$

$$= r^{2e}(0, 0)E \quad \text{if } t = 0.$$

Now $\sum_{\alpha} (0, \alpha) E = \sum_{\alpha} \lambda^{\alpha} E = 0$. So our sum is zero unless t = 0. Then we get

$$r^{2e}K_cK_{c^{-1}}=r^{2e}E.$$

We now have the obvious corollary:

- (4.5) If $c \in C^{\#}$ then K_c is invertible in k[R]E and has inverse equal to K_{c-1} . Let $K_1=E$.
- (4.6) The map $cx \rightarrow K_c x E$ is a representation of CR in k[R]E.

The collection $\{(v, 0)E | v \in \hat{K}\}$ is a k-basis for k[R]E. Also k[R]E is a central simple algebra over k. Thus $cx \to K_c xE$ is a projective representation of CR with a factor set n by (4.3) and (4.5). Further, n is trivial on R. That is, $K_c^{-1}(v, 0)K_c = (v, 0)^c$ all $v \in \hat{K}$.

But then $K_cK_d=n(c,d)K_{cd}$. We continue our earlier computation from (*) for the case $d\neq c^{-1}$.

$$r^{2e}K_{c}K_{d} = \sum_{t} (t, -h(tt^{\phi}(cd-1)^{-1}))$$

$$\cdot \sum_{v} (0, -h(tt^{\phi}[(c-1)^{-1} - (cd-1)^{-1}] + tv^{\phi}(c^{-1}-1)^{-1}$$

$$- vt^{\phi}(c-1)^{-1} + vv^{\phi}[1 + (c-1)^{-1} + (d-1)^{-1}]))E.$$

Put the last sum equal to A'(t). Then

$$= \sum_{t} (t, -h(tt^{\phi}(cd-1)^{-1}))A'(t)E$$

= $-r^{e}n(c, d) \sum_{t} (t, -h(tt^{\phi}(cd-1)^{-1}))E.$

Since A'(t) is a sum of elements from Z(R), A'(t)E=a(t)E where $a(t) \in k$. Further, $\{(t, -h(tt^{\phi}(cd-1)^{-1}))E | t \in \hat{K}\}$ is a k-basis for k[R]E. Therefore $-r^{e}n(c, d)=a(t)$ for all values of t. In particular,

$$-r^{e}n(c, d)E = a(0)E$$

$$= \sum_{a} (0, -h(vv^{\phi}[1 + (c-1)^{-1} + (d-1)^{-1}]))E.$$

The map $v \rightarrow vv^{\phi}$ is the norm map $N: \hat{K}^{\times} \rightarrow \tilde{K}^{\times}$. The kernel has order $r^{e} + 1$. Therefore

$$\begin{split} -r^e n(c, d)E &= E + \sum_{v \in \hat{K}^{\times}} (0, -h(vv^{\phi}[1 + (c-1)^{-1} + (d-1)^{-1}]))E \\ &= E + (r^e + 1) \sum_{u \in \widetilde{K}^{\times}} (0, -h(u[1 + (c-1)^{-1} + (d-1)^{-1}]))E \\ &= -r^e E + (r^e + 1) \sum_{u \in \widetilde{K}} (0, -h(u[1 + (c-1)^{-1} + (d-1)^{-1}]))E. \end{split}$$

Now $-h(u[1+(c-1)^{-1}+(d-1)^{-1}])=f(u)$ is a nontrivial K-linear map of \tilde{K} to K since $d\neq c^{-1}$. Thus

$$-r^{e}n(c,d)E = -r^{e}E + (r^{e} + 1)\sum_{u}(0,f(u))E$$
$$= -r^{e}E + r^{e-1}(r^{e} + 1)\sum_{u \in K}(0,\alpha)E = -r^{e}E.$$

Thus n(c, d) = 1 if $d \neq c^{-1}$. By (4.4) and the definition of K_1 we know that

$$n(1, c) = n(c, 1) = n(c, c^{-1}) = n(c^{-1}, c) = 1.$$

So n is the trivial factor set and we have an ordinary representation.

$$(4.7) \qquad \sum_{c \in C^{\#}} K_c = -E.$$

As usual, we compute

$$-r^{e} \sum_{c \in C^{\#}} K_{c} = \sum_{c,v} (v, -h(vv^{\phi}(c-1)^{-1}))E$$

$$= \sum_{v} (v, 0) \sum_{c} (0, -h(vv^{\phi}(c-1)^{-1}))E.$$

Fix $v \neq 0$. Compute

$$-h(vv^{\phi}(c-1)^{-1}) = -\text{Tr}(2^{-1}\nu vv^{\phi}[(c-1)^{-1} - (c^{-1}-1)^{-1}])$$
$$= -\text{Tr}(2^{-1}vv^{\phi}\nu(c+1)/(c-1)).$$

Next we show that the map $c \rightarrow \nu(c+1)/(c-1)$ is a one-one map of $C^{\#}$ onto \tilde{K} . Note that $(\nu(c+1)/(c-1))^{\phi} = \nu(c+1)/(c-1)$ so the map is into \tilde{K} . Since $|C^{\#}| = r^{e} = |\tilde{K}|$, if the map is one-one, it is onto. So suppose

$$v\frac{c+1}{c-1} = v\frac{d+1}{d-1}, \quad c, d \in C^{\#}.$$

Then (c+1)(d-1)=(d+1)(c-1) or 2(c-d)=0. But r is odd so c=d. Thus the map is one-one onto \tilde{K} .

Returning again to our computation

$$-r^{e} \sum_{c \in C^{\#}} K_{c} = \sum_{v} (v, 0) \sum_{u \in \widetilde{K}} (0, -\operatorname{Tr}(2^{-1}vv^{\phi}u))E$$
$$= r^{e}(0, 0)E + \sum_{v \neq 0} (v, 0)r^{e-1} \sum_{c \in K} (0, \alpha)E = r^{e}E.$$

This proves (4.7).

(4.8) $\{K_c|c\in C^\#\}$ is a linearly independent set of vectors in k[R]E.

Suppose there are constants $\psi_c \in k$ so that $\sum_{c \in C} \# \psi_c K_c = 0$. Then

$$0 = -r^{\epsilon} \sum_{c \in C^{\#}} \psi_c K_c = \sum_{c \in C^{\#}; v \in \hat{K}} \psi_c(v, -h(vv^{\phi}(c-1)^{-1}))E$$
$$= \sum_{v \in \hat{K}} (v, 0) \sum_c \psi_c(0, -h(vv^{\phi}(c-1)^{-1}))E.$$

But $\{(v, 0)E|v \in \hat{K}\}$ is a k-basis for k[R]E. Therefore

$$\sum_{c} \psi_{c}(0, -h(vv^{\phi}(c-1)^{-1}))E = 0$$

for all $v \in \hat{K}$. But $v \rightarrow vv^{\phi}$ is the norm map from \hat{K} to \tilde{K} and is onto. So

$$\sum_{c} \psi_{c}(0, -h(\alpha(c-1)^{-1}))E = 0$$

for all $\alpha \in \tilde{K}$.

Next look at

$$h(\alpha(c-1)^{-1}) = 2^{-1} \operatorname{Tr}(\nu \alpha[(c-1)^{-1} - (c^{-1} - 1)^{-1}])$$

= $2^{-1} \operatorname{Tr}(\alpha \nu(c+1)/(c-1)).$

In (4.7) we saw that the map $c \rightarrow \nu(c+1)/(c-1)$ was one-one from $C^{\#}$ onto \tilde{K} . Let $\beta = \beta(c) = \nu(c+1)/(c-1)$. Then we may take $\psi_c = \psi'_{\beta(c)} = \psi'_{\beta}$ and

$$0 = \sum_{\beta \in K} \psi'_{\beta}(0, f(\alpha, \beta))E$$

for all $\alpha \in \tilde{K}$ where $f(\alpha, \beta) = -2^{-1} \operatorname{Tr}(\alpha\beta)$ is a nonsingular symmetric form from $\tilde{K} \times \tilde{K}$ to K. That is,

$$0 = \sum_{\beta \in \widetilde{K}} \psi_{\beta}' \lambda^{f(\alpha,\beta)} \quad \text{for all } \alpha \in \widetilde{K}.$$

By (2.4) all $\psi'_{\beta} = 0$. This proves (4.8).

(4.9) Define $\Phi(c) = K_c$ and extend linearly to k[C]. Then Φ is an algebra homomorphism with kernel k[C]F where $F = \sum_{x \in C} x$.

This is an easy consequence of (4.6), (4.7), and (4.8).

(4.10) THEOREM. Let V be an irreducible k[CR]-module nontrivial on Z(R). Then there is a k[C]-module W so that

$$V|_C \simeq (k[C]/k[C]F) \otimes_k W.$$

Let E be the primitive central idempotent of k[R] such that $EV \neq (0)$. For appropriate choice of λ in (4.1), E is given there. Let B be the k-subalgebra generated by the K_c 's. Let U be an irreducible k[R] module with $EU \neq (0)$. Then U is a k[CR] module if we let $c \in C$ act as K_c . By (1.2), (1.3) and (4.9), $U|_C \cong_B B$.

So by [2, (51.7)] there is a $CR/R \simeq C$ -module W such that

$$V \simeq U \otimes_{k} W$$
 or $V|_{C} \simeq (k[C]/k[C]F) \otimes W|_{C}$.

We have the following easy corollary.

(4.11) COROLLARY. Let D be a subgroup of C and V an irreducible k[CR]-module faithful on Z(R). Then there is a k[D]-module W so that

$$V|_D \simeq (\dim W)((r^e+1)/|D|-1)k[D] \oplus (k[D]/k[D]F_0) \otimes W$$
where $F_0 = \sum_{x \in D} x$.

We have completed the proof of the theorem. This construction need not be confined to k. With modification it gives a representation of CR in \mathcal{O} , the ring of p-adic integers $p \neq r$, in k when k is an algebraic number field.

Is there a characteristic free proof for r=2?

REFERENCES

- 1. T. R. Berger, Class two p groups as fixed point free automorphism groups, Illinois J. Math. 14 (1970), 121-149. MR 41 #336.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519.
- 3. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3)6(1956), 1-42. MR 17, 344.
 - 4. J. G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1-6. MR 34 #7677.
- 5. E. E. Shult, On groups admitting fixed point free abelian operator groups, Illinois J. Math. 9 (1965), 701-720. MR 32 #1269.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455