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HALL-HIGMAN TYPE THEOREMS. IV

T.  R.  BERGER1

Abstract. Hall and Higman's Theorem B is proved by con-

structing the representation in the group algebra. This proof is

independent of the field characteristic, except in one case.

Let R be an extra special r group. Suppose C_Aut(/?) is cyclic, ir-

reducible faithful on R¡Z(R), and trivial on Z(R). The group CR and its

representation theory have been widely studied and are of some importance.

Let A be a field of characteristic q^r containing a splitting field for R.

Then any faithful irreducible £[/?]-modulé V is absolutely irreducible and

extends to CR.

Hall and Higman [3] studied V\c when C was a a group. Their result is

proved using inequalities on the dimension of Hom^c^F, V). This proof

also works if we only know q\\C\. The central ideal of this proof also

works when (a, | C\)— 1 [5]. However, the count is quite different. There are

character proofs of the result when (a, |C|)=1 [1]. Thompson gave a very

pretty proof of Hall and Higman's original result using vertices and

sources [4].

These proofs suffer from one or more of the following difficulties:

(1) They are all tied to the characteristic a.

(2) When q\ \C\ they depend upon knowing all indecomposable k[C]-

modules.

(3) They are indirect in that they do not construct a representation of

CR.
The theorem in all cases is that V\c is a direct sum of copies of the regular

C-module and one other module U isomorphic to k[C]/k[C]F where F=

ZxeC x. The number of regular modules and the appearance of U are

completely independent of the field characteristic. This makes (1) a strong

objection. Objection (2) becomes important if we drop the condition that

C be cyclic. Finally, a "useful" construction of a given module is often

better than no construction at all.
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The object of this paper is to remedy these three objections for odd

primes r. The representation of CR on Fis explicitly constructed independ-

ent of field characteristic. Then its restriction to C is studied. If \R\=r2e+1

then it is shown that V\c contains (re+l)/|C| —1 copies of the regular C-

module and one copy of k[C]jk[C]F.

I. A remark on central simple algebras.

(1.1) Suppose k is a field and A is a central simple algebra over k of

dimension t2. Assume B is a commutative quasi-Frobenius subalgebra with 1.

Let V be an irreducible A-module. Then V\B~BB+U where BB is B+ con-

sidered as a left B-module and U is some complementary B-module.

The proof is easy. Since B is quasi-Frobenius, BB is injective. Now

B+ÇA+ so that AA\B~BB®W for some 5-module W. The subalgebra B is

commutative. So in a complete decomposition of BB into indécomposables,

each indecomposable summand appears with multiplicity one. For some

s\t, AA~sx V where V is the irreducible ,4-module uniquely determined

up to isomorphism. Using the Krull-Schmidt theorem to compare com-

plete decompositions of the isomorphic modules BB®W and sx V\B we

discover that BB is isomorphic to a summand of V\B.

(1.2) If in (1.1) the dimension of B is t then V\B~BB.

(1.3) Suppose k is a field and g(x)ek[x] has positive degree. Then

k[x]¡(g(x)) is a quasi-Frobenius algebra.

This is well known. See [2, Section 58, Problem 2(c)].

II. A nonsingular matrix.

(2.1) Let r be an odd prime and K=GF(r). Let V be an e_ 1 dimensional

vector space over K andf: Vx V-+K a nonsingular symmetric form.

Since Z/rZ~GF(r) for the integers Z, we may imagine that each a e K

is a least residue in Z.

(2.2) Ifk is afield of characteristic qj^r containing a primitive rth root

of unity £ then the matrix M= [i"%x.ß)eKxK '* nonsingular.

Let N= [{,-*"]. Then the (ß, y) entry of A/A/ is

Yßl-xy  _  y p.ß-y)x _  Q

a

unless ß—y in which case it is r. So MN=rI where / is the identity. Since

r?£0 in k, M has inverse r-1N.

(2.3) If k is afield ofcharacteristic qj^r containing a primitive rth root of

unity £ then the matrix M=[t,nuv)]{u¡vHyyv is nonsingular.

I
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We proceed by induction on dim V. If dim V=\ then f(xu, ßu)=xßp.

for some p.^0 in K so M is the matrix of (2.2) with t,p in place of £ and

(2.3) holds in this case.

Suppose dim V=e and (2.3) holds for all spaces of smaller dimension.

Let {vx, ••■,»,} be an orthogonal basis for V. Such a basis exists since r is

odd. Let U=(v2, •■•, ve). Now/fa, vf)=p. Set 5= [C""]. Then we may
arrange M into blocks

A4 _ rrftevi+u.ßvi+vh

_ rrxßii+Hu.vh _ roy/í«.«)]

= B ® [£   "•* ](u,c)errxt7-

So our matrix is formed as a Kronecker product. Now dim U=e— 1 so the

second matrix in the product is nonsingular. The first matrix is just the

matrix of (2.2) for some primitive root; hence is nonsingular. Therefore M

is nonsingular.

As a corollary we obtain the following:

(2.4) Let K=GF(r°). Let TeKx, Ti~.K-*Kthe trace map, V=K+, and

f(u, v)=Tr(Tuv). Let t, be a primitive rth root in k of characteristic q^r.

Ifj>uek,ueK and 2„ <j>u£fv"v]=0for all veK, then all <f>u=0.

The <£u's give a linear dependence on the columns of M in (2.3). So this

is obvious.

III. The group. Let r be an odd prime and e_l an integer. Let K=

GF(r), K=GFire), and Ä=GF(r2e). Let SF be the Galois group of K/K

and <f>e&the element of order two in 'S. Let p e K+ he of order re+1. Set

v=p—p~x. For u, v eK+ set

h(u, v) = 2~x Tr(v[uv^ - u*v])

where Ti :K-^-K is the trace map.

Note that v[iä>*—u^v] e K, the fixed field of <jS. Thus A is a nonsingular

alternating form on K+. Let R=K+ xK+. For (u, 0, (v, I) 6 R set

(u, Q(v, i) = (u + v, h(u, v) + i + |).

This multiplication makes R into an extra special r group of exponent r

and order r2e+1.

Let C=(p). Now C acts as automorphisms of R by

(u, if=(ux, 0   forxeC,    (w,Qe/?.

We let G=CR be the semidirect product of R by C.
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If G0=C0R0 where R0 is a normal extra special r subgroup of G0 with

Z(R0)=Z(G0) and C0 is a cyclic r' group irreducible on R0/Z(R0) then G0

is isomorphic to a subgroup of G. This fact seems to be well known. In

any case it is a straightforward computation.

IV. The group algebra of CR. Let k be a field of characteristic q^r

which contains a primitive rth root of 1.

We now state some facts about the group algebra of R over k. Let X be a

primitive rth root of unity in k. If z=(0, 1) e R then set

(4.1) E = r-V-1 + ¿r_2z + ■ • ■ + ¿zr~2 + zr_1)

and

*((«,£)) = 0       if   uftQ,

= re#   if   u = 0.

Then £ is the primitive central idempotent of k[R] belonging to the

irreducible character %. Also k [R]E is a central simple algebra of dimension

r2e over k.

Let c e C# and set

<9C = {(», -A(tw*(c - l)-\ 1)) | v e K+}
and

(4.2) K.--i-2xE.

(4.3) If xe Rand ce C# then Kcx'=xKe.

Before starting we note a few properties of the form h. If u, v e K then

h(u, v) = A(»*, a*) = -A(», a) = /¡(mi;*, 1) = -A(i»*, 1).

We let h(u)=h(u, 1). There should be no confusion since the two A's are

related and functions of different numbers of variables. Now h(u) is a

nontrivial JíT-linear functional from K to K.

For x=(u, ô), we compute

-r'x^KX = 2 («• ̂ "V, -A(»ö*[c - 1 ]-'))(«, S)'E
V

= 2 (~«, -á)(», -A(to*[c - îr^Xuc, è)E
V

- 2(í, -A«' - "(c - l)][í - "(c - l)f(c - l)-1

+ u[t - u(c _!)]♦_ [r - u(c - l)]u*c-x + ««♦c~1))E.

Here we have substituted t=v+u(c— 1). Proceeding further,

= 2 (f. -Ä(/i*(c - ir1))^, -h(uu*))E.
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But uu* ekso h(uu't')=0. Thus -rtx-1Kexe->—r*K,. This proves (4.3).

We now compute KcKd for c, de C#.

r*°KcKd = 2 («, -h{uu\c - I)"1)) 2 (v, -h(vv*(d - iyx))E
U V

= ^(u + v, -h(uu*(c - l)-1 + mt(d - I)'1 - uv*))E.
u.v

Let t=u+v and compute,

. .    = J (t, -h(tt*(c - I)"1 + tv*(c-x - I)"1 - vt*(c - I)"1
(*)     tí

+ vv*[l + (c - l)-1 + (d- 1)-X]))E.

(4.4) For c 6 C#, KeKc-x=E.

From our computation of KcKd we obtain,

r2eKcKc-i = 2(i, -ft(ft*(c - I)"1 + iu*(c_1 - I)"1 - rt*(c - I)"1

+ vv*[l + (c - I)"1 + (c-1 - lr1]))^

= 20.-K»*(c-ir1))

• 2(0, -h(tv*(c-x - I)"1 - »i*(c - ír1))^.

Now

ir*(c-a - l)-1 - vt*(c - l)-1 = [t(c~x - l)-x]v"' - v[t(c~x - 1)"Y-

Set A(t)=t(c~x—l)-1. Then the second term of the above expression is

2(0,-h(A(t)v* - A(t)*v))E.
V

But -AO4(O»*-j4(O*0)=/(») is a nontrivial JT-linear map of K+ onto Ä"

provided i^O. But then the sum is

2 (0, f(v))E = r*-12 (0, «)£   if í 5= 0,

= r2c(0, 0)£ if t = 0.

Now 2» (0, a)£=2a ¿ïjE—0- So our sum is zero unless f=0. Then we get

r*eKcKc-i = r2eE.

We now have the obvious corollary:

(4.5) IfceC# then Kc is invertible in k [R]E and has inverse equal to Kc-i.

Let Kx=E.

(4.6) The map cx-+KcxE is a representation ofCR in k[R]E.
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The collection {(v, 0)E\v e K} is a ft-basis for k[R]E. Also k[R]E is a

central simple algebra over k. Thus cx-+KcxE is a projective representation

of CR with a factor set n by (4.3) and (4.5). Further, n is trivial on R. That

is, Ke-i(v, 0)Kc=(v, Of all v e K.
But then KcKd=n(c, d)Kcd. We continue our earlier computation from

(*) for the case d^c~x.

r2°KcKd = Z(t, -h(tt*(cd - I)-1))
t

• 2(0, -h(tt*[(c - I)"1 - {cd - I)"1] + tv*(c-x - I)"1
V

- vt+(c - l)-1 + w*[I + (c - I)"1 + (ci - l)-l]))E.

Put the last sum equal to A'(t). Then

= 2(',-K»*(«f-ir1)M'(0£

= -/-'nCc d) 2 0, -h(tt\cd - lr1))^.

Since /l'(?) is a sum of elements from Z(R), A'(t)E=a(t)E where a(t) ek.

Further, {(r, -¡^(cd-iy^E^ eK} is a A-basis for k[R]E. Therefore

—ren(c, d)=a(t) for all values of t. In particular,

-r'n(c,d)E = a(0)E

= 2(0, -AI>*[1 + (c - I)"1 + (d- \)-¡))E.
V

The map v-f-vv* is the normmapA/:Ä'x-*Ä'x. The kernel has order re + l.

Therefore

-ren(c, d)£ = £ + 2 (0, -h(vv*[\ + (c - l)"1 + (d - l)"1])^

vek*

= E + (re+\)2 (0, -/»(«[I + (c - I)-1 + (<* - 1)_1]))£

= -re£ + (rc-|-l)2(0,-/î(w[l+(c-ir1 + (d-l)-1]))£.

Now — h(u[l + (c— l)~1+(d—1)_1])=/(«) is a nontrivial tf-linear map of

KtoK since d^c~x. Thus

-rp«(c, d)E = -r<£ + (re +1)2 (0,/(«))E
U

= -re£ + r'"V + 1)2(0, «)£ - -re£.
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Thus n(c, a*)=l if dj^c~x. By (4.4) and the definition of Kz we know that

n(\, c) = n(c, 1) = n(c, c~x) = n(c~x, c) = 1.

So n is the trivial factor set and we have an ordinary representation.

(4.7) 2 K* = ~E-
cefß

As usual, we compute

-r' 2 Kc = 2(v, -h(vv*(c - \)-x))E
cgC* c.v

= 2 (v> °) 2 (°. -h(vv*(c - 1)-X))E.
V c

Fix v?zQ. Compute

-h(vv*(c - l)-1) = -Tr(2-1TOi;*[(c - l)"1 - (c~x - I)"1])

= -Tr(2~1i;i;*f(c + l)/(c - 1)).

Next we show that the map c-*-v(c+l)/(c—1) is a one-one map of C#

onto K. Note that (v(c+\)¡(c-\)Y=v(c+\)¡(c-\) so the map is into K.

Since \C#\=re=\K\, if the map is one-one, it is onto. So suppose

c + 1        d+ 1 _#
v-= v-,       c,deC .

c-í        d-\

Then (c+l)(a,-l)=(á+l)(c-l) or 2(c-a")=0. But r is odd so c=d.

Thus the map is one-one onto K.

Returning again to our computation

-re2K' = 2 (^ °) I (°. -^(2-xvv^u))E
ceC" v uejc

= re(0, 0)£ + 2(», 0K_12(°' a>£ = re£-
t>*0 xeK

This proves (4.7).

(4.8) {Kc\c e C*} is a linearly independent set of vectors in k[R]E.

Suppose there are constants y>c e k so that ~2.CeC# W^c=0- Then

o = -re 2 v«*« = 2 . v.(". -Ä(»»*(c - ir1))^

- 5>, °) 2 V«(°. -A(«**(C - 1)_1))£-
vek c



324 T.  R.  BERGER [February

But {(v, 0)E\v eK}isa ¿fc-basis for k[R]E. Therefore

2 y«(0, -h(w*(c - ir»))E = 0
c

for ail veK. But v-^vv* is the norm map from Kto K and is onto. So

2 y.(0, -A(a(c - l)-1)^ = 0
_ c

for all xeK.
Next look at

h(<x(c - I)"1) = 2-1Tr(i>a[(c - l)"1 - (c"1 - l)-1])

= 2-1Tr(aHc+l)/(c-l)).

In (4.7) we saw that the map c->v(c+l)l(c—1) was one-one from C# onto

K. Let ß=ß(c)=v(c+l)l(c—1). Then we may take tpe=y'f{e)=y>'f and

o = 2 v;(o,/(«, /S))£
ßeK

for all a e K where /(a, ß)=—2~1 Tr(a/3) is a nonsingular symmetric form

from KxK to K. That is,

0 = 2 w'ß^H",ß)   for all «e¿

By (2.4) all v',=0. This proves (4.8).

(4.9) Define <!>(c)=Kc and extend linearly to k[C]. Then O is an algebra

homomorphism with kernel k[C]F where F=2iec x.

This is an easy consequence of (4.6), (4.7), and (4.8).

(4.10) Theorem. Let V be an irreducible k[CR]-module nontrivial on

Z(R). Then there is a k[C]-module Wso that

V\c~(k[C]lk[C]F)®kW.

Let E be the primitive central idempotent of k[R] such that EV^(0).

For appropriate choice of A in (4.1), E is given there. Let B be the k-

subalgebra generated by the ^'s. Let U be an irreducible k[R] module

with EU¿¿ (0). Then U is a k [CR] module if we let c e C act as Kc. By (1.2),

(1.3) and (4.9), U\C~BB.
So by [2, (51.7)] there is a CR¡R~C-module IT such that

V~U®kW   or    V\c ~ (k[C]¡k[C]F) ® W\c.

We have the following easy corollary.
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(4.11) Corollary. Let D be a subgroup of C and V an irreducible

k[CR]-module faithful on Z(R). Then there is a k[D]-module W so that

V\D ~ (dim W)((r' + 1)/|D| - l)k[D] ® (k[D]¡k[D]F0) 8 W

where F0= 2*=z> x.

We have completed the proof of the theorem. This construction need

not be confined to k. With modification it gives a representation of CR in

0, the ring of/»-adic integers p^r, in k when k is an algebraic number

field.
Is there a characteristic free proof for r=2?
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