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GLOBAL DIMENSION OF TRIANGULAR ORDERS
OVER A DISCRETE VALUATION RING

VASANTI A. JATEGAONKAR

ABSTRACT. We characterize triangular R-orders of finite global
dimension in # X # matrix rings over the quotient field of DVR Rand
obtain a precise upper bound for their global dimension, viz. n—1.
Wealso characterize triangular R-orders of highest global dimension.

Introduction. Throughout R is a discrete valuation ring (DVR) with
the unique maximal ideal »z, generated by ¢, and quotient field K. An R-
order A in M ,(K) is an R-subalgebra of M, (K) which is finitely generated
as an R-module and spans M, (K) over K. A is tiled if A contains n orthog-
onal idempotents. After a conjugation, if necessary, we may assume that
e,;; € A, where e;; are the usual matrix units in M, (K). Then A is of the
form A=(»), where 4;; € Z. If 4,;=0 whenever i<j then A is called a
triangular R-order. We set Q,=(»"#)< M ,(K), where pu;=0 whenever
i< jand u,;=i—j otherwise.

The main result of this paper is the following

THEOREM. Given a triangular R-order in M, (K), the following are
equivalent: (1) gl. dim. A<, (2) Q,cA, (3) gl. dim. A=n—1.

This result was conjectured by R. B. Tarsey [S]. In the same paper,
Tarsey constructs a triangular R-order in M, (K) of global dimensionn—1.
Hence the bound in our theorem is best possible. We also give a character-
ization of triangular R-orders of highest global dimension. Using this we
construct examples of successive triangular R-orders in M,, ,(K) whose
global dimensions differ exactly by ». This disproves a conjecture in R. B.
Tarsey [S].

The main results of this paper were announced in [1].

After this paper was completed the author received a preprint of [6]
from R. B. Tarsey in which he has independently obtained (1)<=>(2) in
the above theorem; however, his methods yield a bound 2n—4 rather than
n—1.

Received by the editors May 28, 1971.
AMS (MOS) subject classifications (1970). Primary 18G20; Secondary 16A62.
Key words and phrases. Global dimension, order, tiled order, triangular tiled order,
discrete valuation ring, Dedekind domains.
© American Mathematical Society 1973



GLOBAL DIMENSION OF TRIANGULAR ORDERS 9

The proof of the theorem depends on the following lemmas.

LeMMA 1. If A is an R-order in an algebra over the quotient field of
DVR R and if J(A) is the Jacobson radical of A, then gl. dim. A=1+
hd, J(A).

Proor. Silver [4, Corollary 4.6].

Lemma 2. If A is any ring, then rt. gl. dim. A=1+sup,{hd I} where
supremum is taken over right ideals of A, unless A is semisimple.

PrOOF. Well known [3].

Henceforth, we shall fix a positive integer n and unless stated otherwise,
A= (") will denote a triangular R-order in M,(K); P; and J; denote the
ith row of A and its Jacobson radical respectively. We shall always treat
P, and J; as canonical submodules of the first row of A. This makes ex-
pressions like P;+P; unambiguous. Observe that if 4, , ;20 for 2<i=n,
then J(A) is obtained from A by replacing the diagonal entries R by »e.

Let e=>77] e,;, where e,; are the usual idempotents in A. We shall
interchangeably treat eAe as top (n—1) X (n—1) corner of A or as a tri-
angular order in M,_,(K). Let # :mod-A—mod-eAe and ¥ :mod-eAe—
mod-A be the functors defined by #(M)=Me, M € mod-A and ¥(N)=
N®,p.eA where eA=@7-] P,. We shall have repeated occasions to use
these functors.

LEMMA 3. (a) & and 9 are exact additive functors. FPy,---, FP,_,
are principal projectives of eAe. e\ is a progenerator in eAe-mod and
J(eAe) is canonically isomorphic with @}y FJ,.

(b) 9F PP, for 1Sis=n—1.

(c) For every right eAe-module N and right A-module M, we have,

hd, N <hd,,, N, hd,,, FEFM < hd, 9F M.
Further, if % M=~M then hdy M=hd,,, # M.

ProOOF. The first part is clear. For part (b) we observe that ,,,eA is
projective (hence flat) and % P, is isomorphic to a right ideal of eAe, there-
fore

0—> FP;, @1, A —>ele ®@,p, eA

is exact. Hence 9% P,~(% P,)e/A. The last two entries in P, are equal for
1=<i=n—1. So, (FP)eA=P,
The first inequality in (c) is clear since eA, is projective. Now, suppose
hd, YF M=I< 0. Let
d; 1 o
> M, —> M, > M, —> M, —> FM—0
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be a projective resolution of &# M over eAe. Since eAe is semiperfect and

FPy, -, FP,_, are the only principal projectives of eAe, therefore each
M~@ g & P, where the k,; are (possibly empty) sets. Clearly,
d;®1 d_®1
M, GM,
d el dy @1
M, M, >9FM—>0

is a projective resolution of ¥%# M over A. Since hdy ¥F M=I< o,
therefore ¥M,~Im(d,®1)®L for some right A-module L. Since ¥M,~

7 Pfis and A is semiperfect, therefore by the decomposition theorem
[2, Theorem 3] and Krull-Schmidt-Azumaya theorem, Im(d,@l)=
@71 Pfu for some (possibly empty) sets kj;. This shows that # Im(d,®1)
is a right eAe-projective module. Now,

0>F Im(d,®1)>FIM, , > >FGMy—>FGFM-—>0
is a projective resolution of # %% M over eAe, which yields
hd,p, FGFM = 1.
The last assertion follows from above two inequalities.

LemMA 4. If A,,,20 for 2<i=<n and 4, , =1, then YFJ,=J; for
i#n—1.

ProoOF. The proof is similar to that of part (b) of Lemma 3.
LEMMA 5. Ifgl. dim. A<co, then 2, ;=1 and 4, , ,=1.

PrOOF. Suppose 1, ;=2. We have exact sequences,

é 9
0—> 1P, N\ Py—> tP, ® Py —> J, —> 0,

é 0

where ¢,(x)=(x, x) and 0,(x, y)=x—y for i=1, 2. Since J; is not pro-
jective, 1Py N\ Pyoet*217 Py + Py and t*217' P, NPy~ J,, therefore hd , J;= o0
contrary to our hypothesis. Hence 1,,=1. Similarly, looking at ap-
propriate left A-modules we get 4, ,,_ =1

LEmMMA 6. (a) If Q,S A, then Q,_;<SeAe.
(b) If 4;,,1=0 for some l and if f=737_.; ., e,;, then Q,,EA ifQ, =
SAfE M, ((K).

ProoF. The first part is clear since Q,_;=e{,e. Now assume Q,< A.



1973] GLOBAL DIMENSION OF TRIANGULAR ORDERS 11

Since

iy S, + 11,1—1 + ;= )‘i,l + A
therefore, if iZ/Zj then A, ,<(i—I)+(I—1—j)=i—1—j. It follows that
Q,_; < fAf. The remaining case is similarly dealt with.

ProPOSITION 1. If4,; ,20for2<i=Znandif 4, ,_;=1,thengl. dim. A<
co if and only if gl. dim. eAe< co. Further, if gl. dim. A=a< oo and if
gl. dim eAe=f< o then <o =<f+1.

Proor. By Lemma 4, J,~%FJ, for i#n—1. Clearly, FGFJ,_~
FJ,_1. Therefore, by Lemma 3,

hd,J; =hd,,, FJ;, foris#n—1

and hd, (#J,_))eA=hd, 9FJ,_,=hd,\, FJ,_,. Clearly, (#J,_))eA+
P,=J, ,, (¥J, )eANnP,=J,. Hence,

7
(*) 0—>Jni> FJ, DeAoP,—>J, ;—>0

n—1
is exact where ¢(x)=(x, x) and 6(x, y)=x—y. Since F#J, and (F#J,_,)eA
are isomorphic to right ideals of eAe and A respectively, therefore Lemmas
1 and 2 complete the proof.

THEOREM 1. Let A=(w5) be a triangular order in M, (K). Then the
Sfollowing are equivalent: (1) gl. dim. A<, (2) Q, <A, (3) gl. dim. A=
n—1.

PrOOF. (1)=>(2). Proceed by induction on n. For n=2, the result is
trivial and known [5]. Assume n>2. If 4, , ;20 for 2=i=n then, by
Lemma 5, 4,, ,=1. So, Proposition 1 shows that gl. dim. eAe<co.
Hence by induction hypothesis Q, ;<eAe. Since 4, , ;=1, therefore
Q,c A If 4,,, ;=0 for some /, then A is Morita equivalent to fAf, where
f=2.7-1.i41 €, By induction hypothesis Q, ;S fAfc M, ,(K),so Q,=A
by Lemma 6.

(2)=(3). Again we put an induction on n. For n=2, the result is true
and trivial [5]. Let n>2. If 4, , ,20 for 2<i=n, then Lemma 6 and the
induction hypothesis show that gl. dim. eAe=n—2. By Proposition 1,
gl. dim. A<n—1. If 4, ,_,=0 for some /, then A is Morita equivalent to
fAf. By Lemma 6, Q, ,cfAf< M, ,(K), so, by induction hypothesis,
gl. dim. A=gl. dim. fAf<n—2.

(3)=>(1). Clear. This completes the proof.

PROPOSITION 1", If 2, ;120 for 2<i=n and if A, ,=1 then gl. dim. A<
oo if and onlyif gl. dim. e'Ae’ < co where ' =37, e,;. Further,if gl. dim. A
=a< 0, gl. dim. e’Ae’'=y< o0, then y<a=<yp+1.

Proor. Similar to Proposition 1.
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We now look at the triangular orders in M, (K) with global dimension
n—1.

LEMMA 7. Let A=(»*%) be a triangular order in M,(K), n=3. If
gl.dim. A=n—1 then hd, J,;=i—1 for 1=i<n—1 and hd, J,=n—-3.

Proor. Byinduction on n. For n=3, the only triangular order of global
dimension two is €, for which the assertion is trivial. Let nZ3. Since
gl. dim. A=n—1, therefore by Theorem 1, 4, ,_,=1 for 2=i=n. Hence,
by Proposition 1 and Theorem 1, gl. dim. eAe=n—2. As seen in Lemma
3 and Proposition 1, J(eAe)~@75 FJ,, hd, J;=hd,,, FJ,if i#n—1and
hd, (#J, 1)eA=hd,,, #J,_,; byinductionhypothesis, hd, J,=hd,,, % J,
=i—1 for 1=iZ=n—-2, hd,(#J,_.)eA=hd,, FJ, ,=n—4. Since
&J, is isomorphic to a right ideal of eAe, therefore hd, J,=hd,,, #J,=
n—3, by Lemma 2. By hypothesis gl. dim. A=n—1. Hence, by
Lemma 1, hd, J, ;=n—2. So, by () in Proposition 1, hd, J,=n-3.
This completes the proof.

THEOREM 2.  Let A=(2"%) be a triangular order in M, (K), where n=4.
Then gl. dim. A=n—1ifandonlyif A, , =1, 2, ;_y=2=2, ; 5 for 2<i=n.

Proor. For the “only if” part, we proceed by induction on n. Let n=4.
Since gl. dim. A=3, therefore by Theorem 1, 4, ;, ;=1 for 2<i<4. By
Propositions 1, 1" and Theorem 1, gl. dim. eAe=gl. dim. ¢’ Ae’=2. Hence
A31=2=24 5, Ay ;=201 3. But gl. dim. Q=2 [5]; so, we must have 1, ,=2.
Now let nZ4. Since gl. dim. A=n—1, therefore by Theorem 1 and Prop-
ositions 1, 1, gl. dim. eAe=gl. dim. e’Ae’=n—2. Now the induction
hypothesis completes the proof.

For the “if” part again we put induction on n. The assertion is easilyseen
to be true for n=4. Now let nZ4. By induction hypothesis, we have
gl. dim. eAe=n—2. So, Lemma 7 and its proof yield hd, J;=i—1 for
1=isn—2,hd, J,=n—3 and hd,(#J,_)eA=n—4. Hence, by the exact
sequence (*) it is enough to prove that hd, J,=n—3.

Let M be the right A-module obtained from P, by replacing the last two
entries by »2. By hypothesis 4, , ,=2=4, , 5. So the last four entries in
M are equal, viz. »:%. Clearly, as in Lemma 3(b), 4% M~M, so by Lemma
3, hdy, M=hd,,, # M =n—3. The last inequality follows by observing that
& M is isomorphic to a right ideal of eAe. Repeating this two more times,
we get hdy M=n—5. Clearly M+tP,_,=J, and M NtP,_,=~(FJ,_,)eA.
By the above, hd,(#J,_,)eA=n—4. Hence, hd J,=n—3. This completes
the proof.

Now, we give examples of successive triangular orders in M,, ,(K)
whose dimensions differ exactly by n. This disproves a conjecture of R. B.
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Tarsey [5]. We define two families A,,,, and I’y ;, n=1, of triangular
ordersin M,, .;(K)suchthat A, ;and I’y aresuccessive, gl. dim. A, ;=
nand gl. dim. Iy, ,=2n.

For n=1,
R R R R R R
Ay=|» R RJ, I'y= |~ R RJ.
m wm R m?® m R
For n=2,
R R R R R R R R R R
#»n# R R R R #»w#. R R R R
A=) »2 o R R R , s = m?* m R R R
w? wm wm R R w? m* »m R R
w® w® w?® w R w® w® w® m R

It is easy to see that gl. dim. A;=I1, gl. dim. I';=2, gl. dim. A;=2,
gl. dim. I'y=4, A; and I'; are successive and A; and I'; are successive.

For n=3, let U, be a triangular order in M,(K) in which all the entries
on the main subdiagonal are »: and all the entries below the main sub-
diagonal are #»2. Let V,, ,.;=(»), where 0,; are as specified below:

@) 6,,,=0, ,.=1;0,,=0,,.,=2for2=i=n.

(b) 6, ,.,=2;0,, ,=3for2=i=n.

(©) 0,;=3for 1=Zj=n-2.

(d) All the remaining 6, ;=4.

Let
Un+l Mﬂ+l,n(R))
Vn,'n+1 Un

and I';,,,, is obtained from A,, ., by replacing (n+2, n)th entry » by »?.
Trivially, A,,,, and I';,,, are successive.

By Theorem 2, gl. dim. I, ,,=2n. We claim gl. dim. A,,,,=n. Let P,
and J; denote the ith row of A,,,; and its Jacobson radical. Clearly,
Ji=P,. Hence, hd J,=0. Since

# P+ P=J, tPyNPyy=J,, for2=i=n,

A2n+1 = (

therefore, by induction it follows that hd J;=i—1 for 2<i=<n. Since
tP,+P, 3=J, s, tP,NP,  s~P, ,, therefore hd J, ,=1. Now observing
that (#) holds for n43=<i=2n, we get, by induction, hd J;=i—n—1 for
n+3=<is2n.

Let M;=tP,+P,,, for 2=i=n—1. Clearly tP,NP; ,~M,; ; for 3=
i=n—1 and M,=J,. Hence, by induction, hd M;=i—1 for 2<isn-—1.
But tM,_,+P,..=J,,,and tM,_ NP, ,~P,. Therefore, hdJ, =n—2.
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Let N;=tP,+P,,, for 3=<i=n. It is easy to see that tP, "\P, ,~N,_, for
4<i=<n and Ng;=J, ,. Therefore, by induction, hd N,=i—2 for 3<i=n.
Since J,,,.,2=N,, therefore hd J,,,;=nrn—2. Hence, hd J(A,,,;)=n—1.
Therefore, by Lemma 1, gl. dim. A,,,,=n. This completes the proof of
our claim.

ReMARK. Using the usual arguments about localization and com-
pletion, it is easy to see that our results hold when R is a Dedekind domain

rather than DVR_; cf. [5].
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