GLOBAL DIMENSION OF TRIANGULAR ORDERS OVER A DISCRETE VALUATION RING

VASANTI A. JATEGAONKAR

ABSTRACT. We characterize triangular R-orders of finite global dimension in $n \times n$ matrix rings over the quotient field of DVR R and obtain a precise upper bound for their global dimension, viz. n-1. We also characterize triangular R-orders of highest global dimension.

Introduction. Throughout R is a discrete valuation ring (DVR) with the unique maximal ideal m, generated by t, and quotient field K. An R-order Λ in $M_n(K)$ is an R-subalgebra of $M_n(K)$ which is finitely generated as an R-module and spans $M_n(K)$ over K. Λ is tiled if Λ contains n orthogonal idempotents. After a conjugation, if necessary, we may assume that $e_{ii} \in \Lambda$, where e_{ij} are the usual matrix units in $M_n(K)$. Then Λ is of the form $\Lambda = (m^{\lambda_{ij}})$, where $\lambda_{ij} \in Z$. If $\lambda_{ij} = 0$ whenever $i \leq j$ then Λ is called a triangular R-order. We set $\Omega_n = (m^{\mu_{ij}}) \subseteq M_n(K)$, where $\mu_{ij} = 0$ whenever $i \leq j$ and $\mu_{ij} = i - j$ otherwise.

The main result of this paper is the following

THEOREM. Given a triangular R-order in $M_n(K)$, the following are equivalent: (1) gl. dim. $\Lambda < \infty$, (2) $\Omega_n \subseteq \Lambda$, (3) gl. dim. $\Lambda \le n-1$.

This result was conjectured by R. B. Tarsey [5]. In the same paper, Tarsey constructs a triangular R-order in $M_n(K)$ of global dimension n-1. Hence the bound in our theorem is best possible. We also give a characterization of triangular R-orders of highest global dimension. Using this we construct examples of successive triangular R-orders in $M_{2n+1}(K)$ whose global dimensions differ exactly by n. This disproves a conjecture in R. B. Tarsey [5].

The main results of this paper were announced in [1].

After this paper was completed the author received a preprint of [6] from R. B. Tarsey in which he has independently obtained (1) \Leftrightarrow (2) in the above theorem; however, his methods yield a bound 2n-4 rather than n-1.

Received by the editors May 28, 1971.

AMS (MOS) subject classifications (1970). Primary 18G20; Secondary 16A62.

Key words and phrases. Global dimension, order, tiled order, triangular tiled order, discrete valuation ring, Dedekind domains.

[©] American Mathematical Society 1973

The proof of the theorem depends on the following lemmas.

LEMMA 1. If Λ is an R-order in an algebra over the quotient field of DVR R and if $J(\Lambda)$ is the Jacobson radical of Λ , then gl. dim. $\Lambda=1+\mathrm{hd}_{\Lambda}J(\Lambda)$.

PROOF. Silver [4, Corollary 4.6].

LEMMA 2. If Λ is any ring, then rt. gl. dim. $\Lambda=1+\sup_{I}\{hd\ I\}$ where supremum is taken over right ideals of Λ , unless Λ is semisimple.

Proof. Well known [3].

Henceforth, we shall fix a positive integer n and unless stated otherwise, $\Lambda = (m^{\lambda_{ij}})$ will denote a triangular R-order in $M_n(K)$; P_i and J_i denote the ith row of Λ and its Jacobson radical respectively. We shall always treat P_i and J_i as canonical submodules of the first row of Λ . This makes expressions like $P_i + P_j$ unambiguous. Observe that if $\lambda_{i,i-1} \geq 0$ for $2 \leq i \leq n$, then $J(\Lambda)$ is obtained from Λ by replacing the diagonal entries R by m.

Let $e=\sum_{i=1}^{n-1}e_{ii}$, where e_{ii} are the usual idempotents in Λ . We shall interchangeably treat $e\Lambda e$ as top $(n-1)\times (n-1)$ corner of Λ or as a triangular order in $M_{n-1}(K)$. Let $\mathscr{F}: \operatorname{mod}-\Lambda \to \operatorname{mod}-e\Lambda e$ and $\mathscr{G}: \operatorname{mod}-e\Lambda e \to \operatorname{mod}-\Lambda$ be the functors defined by $\mathscr{F}(M)=Me$, $M\in \operatorname{mod}-\Lambda$ and $\mathscr{G}(N)=N\otimes_{e\Lambda e}e\Lambda$ where $e\Lambda=\bigoplus_{i=1}^{n-1}P_i$. We shall have repeated occasions to use these functors.

- LEMMA 3. (a) \mathscr{F} and \mathscr{G} are exact additive functors. $\mathscr{F}P_1, \dots, \mathscr{F}P_{n-1}$ are principal projectives of $e\Lambda e$. $e\Lambda$ is a progenerator in $e\Lambda e$ -mod and $J(e\Lambda e)$ is canonically isomorphic with $\bigoplus_{i=1}^{n-1} \mathscr{F}J_i$.
 - (b) $\mathscr{GFP}_i \cong P_i$ for $1 \leq i \leq n-1$.
 - (c) For every right $e\Lambda e$ -module N and right Λ -module M, we have,

$$\operatorname{hd}_{\Lambda} \mathscr{G} N \leqq \operatorname{hd}_{e \Lambda e} N, \qquad \operatorname{hd}_{e \Lambda e} \mathscr{F} \mathscr{G} \mathscr{F} M \leqq \operatorname{hd}_{\Lambda} \mathscr{G} \mathscr{F} M.$$

Further, if $\mathscr{GF}M \cong M$ then $\operatorname{hd}_{\Lambda} M = \operatorname{hd}_{e\Lambda e} \mathscr{F}M$.

PROOF. The first part is clear. For part (b) we observe that ${}_{e\Lambda e}e\Lambda$ is projective (hence flat) and $\mathscr{F}P_i$ is isomorphic to a right ideal of $e\Lambda e$, therefore

$$0 \to \mathscr{F}P_i \otimes_{e\Lambda e} e\Lambda \to e\Lambda e \otimes_{e\Lambda e} e\Lambda$$

is exact. Hence $\mathscr{GF}P_i\cong(\mathscr{F}P_i)e\Lambda$. The last two entries in P_i are equal for $1\leq i\leq n-1$. So, $(\mathscr{F}P_i)e\Lambda=P_i$.

The first inequality in (c) is clear since $e\Lambda_{\Lambda}$ is projective. Now, suppose $\mathrm{hd}_{\Lambda}\,\mathscr{GF}M=l<\infty$. Let

$$\cdots \longrightarrow M_i \xrightarrow{d_i} M_{i-1} \longrightarrow \cdots \longrightarrow M_1 \xrightarrow{d_1} M_0 \xrightarrow{d_0} \mathscr{F}M \longrightarrow 0$$

be a projective resolution of $\mathcal{F}M$ over $e\Lambda e$. Since $e\Lambda e$ is semiperfect and $\mathcal{F}P_1, \dots, \mathcal{F}P_{n-1}$ are the only principal projectives of $e\Lambda e$, therefore each $M_i \cong \bigoplus_{j=1}^{n-1} \mathcal{F}P_j^{k_{ij}}$, where the k_{ij} are (possibly empty) sets. Clearly,

$$\cdots \longrightarrow \mathscr{G}M_i \xrightarrow{d_i \otimes 1} \mathscr{G}M_{i-1} \xrightarrow{d_{i-1} \otimes 1} \cdots \longrightarrow \mathscr{G}M_1 \xrightarrow{d_1 \otimes 1} \mathscr{G}M_0 \xrightarrow{d_0 \otimes 1} \mathscr{G}\mathscr{F}M \longrightarrow 0$$

is a projective resolution of \mathscr{GFM} over Λ . Since $\operatorname{hd}_{\Lambda} \mathscr{GFM} = l < \infty$, therefore $\mathscr{GM}_{l} \cong \operatorname{Im}(d_{l} \otimes 1) \oplus L$ for some right Λ -module L. Since $\mathscr{GM}_{l} \cong \bigoplus_{j=1}^{n-1} P_{j}^{k_{lj}}$ and Λ is semiperfect, therefore by the decomposition theorem [2, Theorem 3] and Krull-Schmidt-Azumaya theorem, $\operatorname{Im}(d_{l} \otimes 1) \cong \bigoplus_{j=1}^{n-1} P_{j}^{k_{lj}}$ for some (possibly empty) sets k'_{lj} . This shows that \mathscr{F} $\operatorname{Im}(d_{l} \otimes 1)$ is a right $e\Lambda e$ -projective module. Now,

$$0 \to \mathscr{F} \operatorname{Im}(d_1 \otimes 1) \to \mathscr{F} \mathscr{G} M_{1-1} \to \cdots \to \mathscr{F} \mathscr{G} M_0 \to \mathscr{F} \mathscr{G} \mathscr{F} M \to 0$$

is a projective resolution of \mathcal{FGFM} over $e\Lambda e$, which yields

$$hd_{AA} \mathcal{FGF} M \leq l$$
.

The last assertion follows from above two inequalities.

LEMMA 4. If $\lambda_{i,i-1} \geq 0$ for $2 \leq i \leq n$ and $\lambda_{n,n-1} = 1$, then $\mathscr{GF}J_i \cong J_i$ for $i \neq n-1$.

PROOF. The proof is similar to that of part (b) of Lemma 3.

LEMMA 5. If gl. dim. $\Lambda < \infty$, then $\lambda_{2,1} \leq 1$ and $\lambda_{n,n-1} \leq 1$.

PROOF. Suppose $\lambda_{2,1} \ge 2$. We have exact sequences,

$$0 \longrightarrow tP_1 \cap P_2 \xrightarrow{\phi_1} tP_1 \oplus P_2 \xrightarrow{\theta_1} J_1 \longrightarrow 0,$$

$$0 \longrightarrow t^{\lambda_2,1^{-1}}P_1 \cap P_2 \xrightarrow{\phi_2} t^{\lambda_2,1^{-1}}P_1 \oplus P_2 \xrightarrow{\theta_2} t^{\lambda_2,1^{-1}}P_1 + P_2 \longrightarrow 0,$$

where $\phi_i(x) = (x, x)$ and $\theta_i(x, y) = x - y$ for i = 1, 2. Since J_1 is not projective, $tP_1 \cap P_2 \cong t^{\lambda_2, 1^{-1}} P_1 + P_2$ and $t^{\lambda_2, 1^{-1}} P_1 \cap P_2 \cong J_1$, therefore $\text{hd}_{\Lambda} J_1 = \infty$, contrary to our hypothesis. Hence $\lambda_{2,1} \leq 1$. Similarly, looking at appropriate left Λ -modules we get $\lambda_{n,n-1} \leq 1$.

Lemma 6. (a) If $\Omega_n \subseteq \Lambda$, then $\Omega_{n-1} \subseteq e\Lambda e$.

(b) If $\lambda_{l,l-1}=0$ for some l and if $f=\sum_{i=1;i\neq l}^n e_{ii}$, then $\Omega_n\subseteq \Lambda$ iff $\Omega_{n-1}\subseteq f\Lambda f\subseteq M_{n-1}(K)$.

PROOF. The first part is clear since $\Omega_{n-1} = e\Omega_n e$. Now assume $\Omega_n \subseteq \Lambda$.

Since

$$\lambda_{i,j} \leq \lambda_{i,l} + \lambda_{l,l-1} + \lambda_{l-1,j} = \lambda_{i,l} + \lambda_{l-1,j},$$

therefore, if $i \geq l \geq j$ then $\lambda_{i,j} \leq (i-l) + (l-1-j) = i-1-j$. It follows that $\Omega_{n-1} \subseteq f \wedge f$. The remaining case is similarly dealt with.

PROPOSITION 1. If $\lambda_{i,i-1} \neq 0$ for $2 \leq i \leq n$ and if $\lambda_{n,n-1} = 1$, then gl. dim. $\Lambda < \infty$ if and only if gl. dim. $e\Lambda e < \infty$. Further, if gl. dim. $\Lambda = \alpha < \infty$ and if gl. dim $e\Lambda e = \beta < \infty$ then $\beta \leq \alpha \leq \beta + 1$.

PROOF. By Lemma 4, $J_i \cong \mathscr{GF} J_i$ for $i \neq n-1$. Clearly, $\mathscr{FGF} J_{n-1} \cong \mathscr{F} J_{n-1}$. Therefore, by Lemma 3,

$$\operatorname{hd}_{\Lambda} J_{i} = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_{i}$$
 for $i \neq n-1$

and $\operatorname{hd}_{\Lambda}(\mathscr{F}J_{n-1})e\Lambda = \operatorname{hd}_{\Lambda}\mathscr{G}\mathscr{F}J_{n-1} = \operatorname{hd}_{e\Lambda e}\mathscr{F}J_{n-1}$. Clearly, $(\mathscr{F}J_{n-1})e\Lambda + P_n = J_{n-1}$, $(\mathscr{F}J_{n-1})e\Lambda \cap P_n = J_n$. Hence,

$$(*) 0 \longrightarrow J_n \xrightarrow{\phi} (\mathscr{F}J_{n-1})e\Lambda \oplus P_n \xrightarrow{\theta} J_{n-1} \longrightarrow 0$$

is exact where $\phi(x)=(x, x)$ and $\theta(x, y)=x-y$. Since $\mathcal{F}J_n$ and $(\mathcal{F}J_{n-1})e\Lambda$ are isomorphic to right ideals of $e\Lambda e$ and Λ respectively, therefore Lemmas 1 and 2 complete the proof.

THEOREM 1. Let $\Lambda = (m^{\lambda_{ij}})$ be a triangular order in $M_n(K)$. Then the following are equivalent: (1) gl. dim. $\Lambda < \infty$, (2) $\Omega_n \subseteq \Lambda$, (3) gl. dim. $\Lambda \le n-1$.

PROOF. (1) \Rightarrow (2). Proceed by induction on n. For n=2, the result is trivial and known [5]. Assume n>2. If $\lambda_{i,i-1} \not\geq 0$ for $2 \leq i \leq n$ then, by Lemma 5, $\lambda_{n,n-1}=1$. So, Proposition 1 shows that gl. dim. $e\Lambda e < \infty$. Hence by induction hypothesis $\Omega_{n-1} \subseteq e\Lambda e$. Since $\lambda_{n,n-1}=1$, therefore $\Omega_n \subseteq \Lambda$. If $\lambda_{l,l-1}=0$ for some l, then Λ is Morita equivalent to $f\Lambda f$, where $f=\sum_{i=1;i\neq l}^n e_{ii}$. By induction hypothesis $\Omega_{n-1}\subseteq f\Lambda f\subseteq M_{n-1}(K)$, so $\Omega_n\subseteq \Lambda$ by Lemma 6.

(2) \Rightarrow (3). Again we put an induction on n. For n=2, the result is true and trivial [5]. Let n>2. If $\lambda_{i,i-1} \not\geq 0$ for $2 \leq i \leq n$, then Lemma 6 and the induction hypothesis show that gl. dim. $e \wedge e \leq n-2$. By Proposition 1, gl. dim. $\Lambda \leq n-1$. If $\lambda_{i,i-1}=0$ for some l, then Λ is Morita equivalent to $f \wedge f$. By Lemma 6, $\Omega_{n-1} \subseteq f \wedge f \subseteq M_{n-1}(K)$, so, by induction hypothesis, gl. dim. $\Lambda = gl$. dim. $f \wedge f \leq n-2$.

 $(3) \Rightarrow (1)$. Clear. This completes the proof.

PROPOSITION 1'. If $\lambda_{i,i-1} \geq 0$ for $2 \leq i \leq n$ and if $\lambda_{2,1} = 1$ then gl. dim. $\Lambda < \infty$ if and only if gl. dim. $e' \Lambda e' < \infty$ where $e' = \sum_{i=2}^{n} e_{ii}$. Further, if gl. dim. $\Lambda = \alpha < \infty$, gl. dim. $e' \Lambda e' = \gamma < \infty$, then $\gamma \leq \alpha \leq \gamma + 1$.

PROOF. Similar to Proposition 1.

We now look at the triangular orders in $M_n(K)$ with global dimension n-1.

[March

LEMMA 7. Let $\Lambda = (m^{\lambda_{ij}})$ be a triangular order in $M_n(K)$, $n \ge 3$. If gl. dim. $\Lambda = n-1$ then $\operatorname{hd}_{\Lambda} J_i = i-1$ for $1 \le i \le n-1$ and $\operatorname{hd}_{\Lambda} J_n = n-3$.

PROOF. By induction on n. For n=3, the only triangular order of global dimension two is Ω_3 , for which the assertion is trivial. Let $n \geq 3$. Since gl. dim. $\Lambda = n-1$, therefore by Theorem 1, $\lambda_{i,i-1} = 1$ for $2 \leq i \leq n$. Hence, by Proposition 1 and Theorem 1, gl. dim. $e\Lambda e = n-2$. As seen in Lemma 3 and Proposition 1, $J(e\Lambda e) \cong \bigoplus_{i=1}^{n-1} \mathscr{F} J_i$, $\operatorname{hd}_{\Lambda} J_i = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_i$ if $i \neq n-1$ and $\operatorname{hd}_{\Lambda} (\mathscr{F} J_{n-1}) e\Lambda = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_{n-1}$; by induction hypothesis, $\operatorname{hd}_{\Lambda} J_i = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_i = i-1$ for $1 \leq i \leq n-2$, $\operatorname{hd}_{\Lambda} (\mathscr{F} J_{n-1}) e\Lambda = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_{n-1} = n-4$. Since $\mathscr{F} J_n$ is isomorphic to a right ideal of $e\Lambda e$, therefore $\operatorname{hd}_{\Lambda} J_n = \operatorname{hd}_{e\Lambda e} \mathscr{F} J_n \leq n-3$, by Lemma 2. By hypothesis gl. dim. $\Lambda = n-1$. Hence, by Lemma 1, $\operatorname{hd}_{\Lambda} J_{n-1} = n-2$. So, by (*) in Proposition 1, $\operatorname{hd}_{\Lambda} J_n = n-3$. This completes the proof.

THEOREM 2. Let $\Lambda = (m^{\lambda_{ij}})$ be a triangular order in $M_n(K)$, where $n \ge 4$. Then gl. dim. $\Lambda = n - 1$ if and only if $\lambda_{i,i-1} = 1$, $\lambda_{i,i-2} = 2 = \lambda_{i,i-3}$ for $2 \le i \le n$.

PROOF. For the "only if" part, we proceed by induction on n. Let n=4. Since gl. dim. $\Lambda=3$, therefore by Theorem 1, $\lambda_{i,i-1}=1$ for $2 \le i \le 4$. By Propositions 1, 1' and Theorem 1, gl. dim. $e \land e = \text{gl.}$ dim. $e' \land e' = 2$. Hence $\lambda_{3,1}=2=\lambda_{4,2}, \lambda_{4,1}=2$ or 3. But gl. dim. $\Omega_4=2$ [5]; so, we must have $\lambda_{4,1}=2$. Now let $n \ge 4$. Since gl. dim. $\Lambda=n-1$, therefore by Theorem 1 and Propositions 1, 1', gl. dim. $e \land e = \text{gl.}$ dim. $e' \land e' = n-2$. Now the induction hypothesis completes the proof.

For the "if" part again we put induction on n. The assertion is easily seen to be true for n=4. Now let $n \ge 4$. By induction hypothesis, we have gl. dim. $e\Lambda e = n-2$. So, Lemma 7 and its proof yield $\mathrm{hd}_{\Lambda} J_i = i-1$ for $1 \le i \le n-2$, $\mathrm{hd}_{\Lambda} J_n \le n-3$ and $\mathrm{hd}_{\Lambda} (\mathscr{F} J_{n-1}) e\Lambda = n-4$. Hence, by the exact sequence (*) it is enough to prove that $\mathrm{hd}_{\Lambda} J_n = n-3$.

Let M be the right Λ -module obtained from P_n by replacing the last two entries by m^2 . By hypothesis $\lambda_{n,n-2}=2=\lambda_{n,n-3}$. So the last four entries in M are equal, viz. m^2 . Clearly, as in Lemma 3(b), $\mathscr{GF}M\cong M$, so by Lemma 3, $\mathrm{hd}_{\Lambda}M=\mathrm{hd}_{e\Lambda e}\mathscr{F}M\leqq n-3$. The last inequality follows by observing that $\mathscr{F}M$ is isomorphic to a right ideal of $e\Lambda e$. Repeating this two more times, we get $\mathrm{hd}_{\Lambda}M\leqq n-5$. Clearly $M+tP_{n-1}=J_n$ and $M\cap tP_{n-1}\cong (\mathscr{F}J_{n-1})e\Lambda$. By the above, $\mathrm{hd}_{\Lambda}(\mathscr{F}J_{n-1})e\Lambda=n-4$. Hence, $\mathrm{hd}_{J_n}=n-3$. This completes the proof.

Now, we give examples of successive triangular orders in $M_{2n+1}(K)$ whose dimensions differ exactly by n. This disproves a conjecture of R. B.

Tarsey [5]. We define two families Λ_{2n+1} and Γ_{2n+1} , $n \ge 1$, of triangular orders in $M_{2n+1}(K)$ such that Λ_{2n+1} and Γ_{2n+1} are successive, gl. dim. $\Lambda_{2n+1} = n$ and gl. dim. $\Gamma_{2n+1} = 2n$.

For n=1,

$$\Lambda_3 = \begin{pmatrix} R & R & R \\ m & R & R \\ m & m & R \end{pmatrix}, \qquad \Gamma_3 = \begin{pmatrix} R & R & R \\ m & R & R \\ m^2 & m & R \end{pmatrix}.$$

For n=2

$$\Lambda_{5} = \begin{pmatrix} R & R & R & R & R \\ m_{i} & R & R & R & R \\ m_{i}^{2} & m_{i} & R & R & R \\ m_{i}^{2} & m_{i} & m_{i} & R & R \\ m_{i}^{3} & m_{i}^{2} & m_{i}^{2} & m_{i} & R \end{pmatrix}, \qquad \Gamma_{5} = \begin{pmatrix} R & R & R & R & R \\ m_{i} & R & R & R & R \\ m_{i}^{2} & m_{i} & R & R & R \\ m_{i}^{2} & m_{i}^{2} & m_{i} & R & R \\ m_{i}^{3} & m_{i}^{2} & m_{i}^{2} & m_{i} & R \end{pmatrix}.$$

It is easy to see that gl. dim. $\Lambda_3=1$, gl. dim. $\Gamma_3=2$, gl. dim. $\Lambda_5=2$, gl. dim. $\Gamma_5=4$, Λ_3 and Γ_3 are successive and Λ_5 and Γ_5 are successive.

For $n \ge 3$, let U_n be a triangular order in $M_n(K)$ in which all the entries on the main subdiagonal are m and all the entries below the main subdiagonal are m^2 . Let $V_{n,n+1} = (m^{\theta_{ij}})$, where θ_{ij} are as specified below:

- (a) $\theta_{1,n} = \theta_{1,n+1} = 1$; $\theta_{i,n} = \theta_{i,n+1} = 2$ for $2 \le i \le n$.
- (b) $\theta_{1,n-1}=2$; $\theta_{i,n-1}=3$ for $2 \le i \le n$.
- (c) $\theta_{1,j}=3$ for $1 \leq j \leq n-2$.
- (d) All the remaining $\theta_{i,j} = 4$.

Let

$$\Lambda_{2n+1} = \begin{pmatrix} U_{n+1} & M_{n+1,n}(R) \\ V_{n,n+1} & U_n \end{pmatrix}$$

and Γ_{2n+1} is obtained from Λ_{2n+1} by replacing (n+2, n)th entry m by m^2 . Trivially, Λ_{2n+1} and Γ_{2n+1} are successive.

By Theorem 2, gl. dim. $\Gamma_{2n+1}=2n$. We claim gl. dim. $\Lambda_{2n+1}=n$. Let P_i and J_i denote the *i*th row of Λ_{2n+1} and its Jacobson radical. Clearly, $J_1 \cong P_2$. Hence, hd $J_1=0$. Since

(#)
$$tP_{i-1} + P_{i+1} = J_i$$
, $tP_{i-1} \cap P_{i+1} \cong J_{i-1}$ for $2 \le i \le n$,

therefore, by induction it follows that $\operatorname{hd} J_i = i-1$ for $2 \le i \le n$. Since $tP_n + P_{n+3} = J_{n+2}$, $tP_n \cap P_{n+3} \cong P_{n+2}$, therefore $\operatorname{hd} J_{n+2} = 1$. Now observing that (#) holds for $n+3 \le i \le 2n$, we get, by induction, $\operatorname{hd} J_i = i-n-1$ for $n+3 \le i \le 2n$.

Let $M_i = tP_1 + P_{i+1}$ for $2 \le i \le n-1$. Clearly $tP_1 \cap P_{i+1} \cong M_{i-1}$ for $3 \le i \le n-1$ and $M_2 = J_2$. Hence, by induction, hd $M_i = i-1$ for $2 \le i \le n-1$. But $tM_{n-1} + P_{n+2} = J_{n+1}$ and $tM_{n-1} \cap P_{n+2} \cong P_n$. Therefore, hd $J_{n+1} = n-2$.

Let $N_i = tP_n + P_{n+i}$ for $3 \le i \le n$. It is easy to see that $tP_n \cap P_{n+i} \cong N_{i-1}$ for $4 \le i \le n$ and $N_3 = J_{n+2}$. Therefore, by induction, hd $N_i = i-2$ for $3 \le i \le n$. Since $J_{2n+1} \cong N_n$, therefore hd $J_{2n+1} = n-2$. Hence, hd $J(\Lambda_{2n+1}) = n-1$. Therefore, by Lemma 1, gl. dim. $\Lambda_{2n+1} = n$. This completes the proof of our claim.

REMARK. Using the usual arguments about localization and completion, it is easy to see that our results hold when R is a Dedekind domain rather than DVR.; cf. [5].

BIBLIOGRAPHY

- 1. Vasanti A. Jategaonkar, Global dimension of triangular orders over DVR, Notices Amer. Math. Soc. 18 (1971), 626. Abstract #71T-A107.
- 2. Bruno J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464-467. MR 41 #6909.
- 3. Joseph J. Rotman, Notes on homological algebra, Van Nostrand Reinhold, New York, 1968.
- 4. L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76. MR 36 #205.
- 5. R. B. Tarsey, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340.
- 6. ——, Global dimension of triangular orders, Proc. Amer. Math. Soc. 28 (1971), 423–426.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850