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GLOBAL  DIMENSION  OF  TRIANGULAR   ORDERS

OVER  A  DISCRETE  VALUATION  RING

VASANTI  A.   JATEGAONKAR

Abstract. We characterize triangular Ä-orders of finite global

dimension in n x n matrix rings over the quotient field of DVR R and

obtain a precise upper bound for their global dimension, viz. n — \.

We also characterize triangular Ä-orders of highest global dimension.

Introduction. Throughout R is a discrete valuation ring (DVR) with

the unique maximal ideal m, generated by /, and quotient field K. An R-

order A in Mn(K) is an Ä-subalgebra of Mn(K) which is finitely generated

as an jR-module and spans Mn{K) over K. A is tiled if A contains n orthog-

onal idempotents. After a conjugation, if necessary, we may assume that

eti g A, where etj are the usual matrix units in Mn(K). Then A is of the

form A**(mx"), where Xtj g Z. If Ai3=0 whenever i^j then A is called a

triangular Ä-order. We set Q.n = (*x"»)^Mn(K), where (¿¡¡=0 whenever

i^j and /Ki3-=í—j otherwise.

The main result of this paper is the following

Theorem. Given a triangular R-order in Mn(K), the following are

equivalent: (1) gl. dim. A<co, (2) Qnç A, (3) gl. dim. A^« —1.

This result was conjectured by R. B. Tarsey [5]. In the same paper,

Tarsey constructs a triangular Ä-order in Mn(K) of global dimension « — 1.

Hence the bound in our theorem is best possible. We also give a character-

ization of triangular R-orders of highest global dimension. Using this we

construct examples of successive triangular R-orders in Min+1(K) whose

global dimensions differ exactly by n. This disproves a conjecture in R. B.

Tarsey [5].

The main results of this paper were announced in [1].

After this paper was completed the author received a preprint of [6]

from R. B. Tarsey in which he has independently obtained (1)<=>(2) in

the above theorem ; however, his methods yield a bound 2« —4 rather than

«-I.
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The proof of the theorem depends on the following lemmas.

Lemma 1.    If A is an R-order in an algebra over the quotient field of

DVRR and if /(A) is the Jacobson radical of A, then gl. dim. A=l +

hdA 7(A).

Proof.    Silver [4, Corollary 4.6].

Lemma 2. If A is any ring, then rt. gl. dim. A=l+sup/{hd /} where

supremum is taken over right ideals of A, unless A is semisimple.

Proof.    Well known [3].

Henceforth, we shall fix a positive integer n and unless stated otherwise,

A«= (*»**') will denote a triangular Ä-order in Mn(K); P¡ and J¡ denote the

;'th row of A and its Jacobson radical respectively. We shall always treat

Pt and J¿ as canonical submodules of the first row of A. This makes ex-

pressions like Pi+Pj unambiguous. Observe that if /I, ,_!^0 for 2^;'^«,

then /(A) is obtained from A by replacing the diagonal entries R by m.

Let e=2?=íe¡t> where eu are the usual idempotents in A. We shall

interchangeably treat eAe as top (n — l)x (« — 1) corner of A or as a tri-

angular order in Mn_x{K). Let SF : mod-A-*mod-eAe and ^:mod-eAe—>-

mod-A be the functors defined by &r(M) = Me, Memod-A and @(N) =

N®eAeeA where eA=©"r11Pi. We shall have repeated occasions to use

these functors.

Lemma 3. (a) 3F and <$ are exact additive functors. ^Px, • • • , &Pn-i

are principal projectives of eAe. eA is a progenerator in eA<?-mod and

J(eAe) is canonically isomorphic with ®"Z\ J^/,.

(b) 9&Pm*ifor 1<|i<»-1.
(c) For every right eAe-module N and right A-module M, we have,

hdA &N <S hd6Ae N,       hdeAe ̂ ^M ^ hdA <S&M.

Further, if<&&Mg±M then hdA M=hdeAe &M.

Proof. The first part is clear. For part (b) we observe that eAeeA is

projective (hence flat) and J<\P, is isomorphic to a right ideal of eAe, there-

fore

0 -* ^Pi ®eAe eA -> eAe ®eAe eA

is exact. Hence <&!FPi<^ijFPÙeA. The last two entries in Pi are equal for

l<jí^»-l. So, (&rPi)eA=Pi.

The first inequality in (c) is clear since eAA is projective. Now, suppose

hdA^FM=/<co. Let

di di do    ^
-> Mi —> Aff_i —► • • • —► M1 —► M0 —► 3FM —► 0
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be a projective resolution of J^M over eAe. Since eAe is semiperfect and

^Px, • • • , ^Pn^\ are the only principal projectives of eAe, therefore each

jW¿=©3*ri ^Pf", where the kfj are (possibly empty) sets. Clearly,

dt ® 1 di_x ® 1
• • ■-> &M,-> 'SM^-► • ■ ■-►

í/i ® 1              d0®\
^Mx-► á?M0-► y&M-► 0

is a projective resolution of 'StFM over A. Since hdA @&rM=l<ao,

therefore &Ml^lm(dl®l)®L for some right A-module L. Since ^Af¡^

©i=i P^1' and A is semiperfect, therefore by the decomposition theorem

[2, Theorem 3] and Krull-Schmidt-Azumaya theorem, Im(í/¡®1)^

®l=l Pf" for some (possibly empty) sets k'u. This shows that ÍF lm{dl®\)

is a right eAe-projective module. Now,

0 -> & Im(i/j <g> 1) -► ßf'SM^ -*-► ^^Mu ->■ 3F<S^M -> 0

is a projective resolution of ¡F^iFM over eAe, which yields

hdeAe &<3&M ^ /.

The last assertion follows from above two inequalities.

Lemma 4.   If ^-.£0 for 2<i<« W A»,«-!8*1» ,/!É>" lë&JmJifor
ijín — \.

Proof.    The proof is similar to that of part (b) of Lemma 3.

Lemma 5.    //gl. dim. A<co, then X%i£s\ and Xn,*-.i¿¡i.

Proof.    Suppose A21^2. We have exact sequences,

</>i 0j
0 —► tPi n P2 —y tP1 © P2 —► Jy —> 0,

o —► ti**-*p1 n p2 —y H*.*-1!», © p2 —► r*»'1-1^! + p2 —>• 0,

where </>,(x) = (x, x) and o¿(x, j)=x—j for ;'=1, 2. Since Jx is not pro-

jective, tPy n/>2^iA2l_1P1+P2 and i^21"1/5! nP^Jy, therefore hdA/j = co,

contrary to our hypothesis. Hence /l21^l. Similarly, looking at ap-

propriate left A-modules we get ^s,„_i^l.

Lemma 6.    (a) lfLln^A, then Q^jSeAe.

(b) If 1^=0 for some I and iff=2U^i ««, '*«« "»£ A «J"n-iS
fAfçzM^(K).

Proof.   The first part is clear since Q„_1=eü„e. Now assume Í2„£ A.



1973) GLOBAL  DIMENSION  OF  TRIANGULAR  ORDERS 1 1

Since

therefore, if />/>_/ then A, ̂ (/-/) +(/-l -j) = i-\-j. It follows that

£i„-i£/A/. The remaining case is similarly dealt with.

Proposition 1.    IfX{i^0for2^i^nandifÀnn__1=l,theng\. dim. A<

00 if and only if gl. dim. eAe<co. Further, if gl. dim. A = a<oo a«<7 ;/

gl. dim eAe=ß<<x> then ßfka.fkß+\.

Proof. By Lemma 4, J^S&Ji for i^n—l. Clearly, ^^^J^g^

£FJn_x. Therefore, by Lemma 3,

hdA Jf = hdcAc 3FJi   for i ?* « — 1

and hdA(J^/ri_1)eA=hdA^J^/n_1 = hdeAc.FJ„_1. Clearly, (^/„_1)eA+

P«=Jn-u {&Jn-¿eAc\P=Jn. Hence,

</> 0
(*) 0 —► J„ —► (*7_>A © ¿>„ —> /„_, —► 0

is exact where </>(x) = (x, x) and 0(x,y)=x— y. Since ^Jn and (^'Jn_1)eA

are isomorphic to right ideals of eAe and A respectively, therefore Lemmas

1 and 2 complete the proof.

Theorem 1. Let A = («/«) be a triangular order in Mn(K). Then the

following are equivalent: (1) gl. dim. A<co, (2) Q„çA, (3) gl. dim. A^

n-1.

Proof. (1)=>(2). Proceed by induction on n. For n=2, the result is

trivial and known [5]. Assume n>2. If A¿ ,^0 for 2^if^n then, by

Lemma 5, A„_„_1 = 1. So, Proposition 1 shows that gl. dim. eAe<oo.

Hence by induction hypothesis D.n_1^eAe. Since ln¡n_x=\, therefore

ü„sA. If A¡>¡_1=0 for some /, then A is Morita equivalent to/A/, where

/=2"-i;í#í eu- By induction hypothesis ii„_1s/A/c,l/B_I(A0, so 0.ncA

by Lemma 6.

(2)=>(3). Again we put an induction on n. For n=2, the result is true

and trivial [5]. Let n>2. If Xtpj_i^0 for 2^/2¡h, then Lemma 6 and the

induction hypothesis show that gl. dim. eAe^«—2. By Proposition 1,

gl. dim. A^n —1. If A¡_1_1=0 for some /, then A is Morita equivalent to

fAf. By Lemma 6, £2„_1£/A/£.A/n_1Crr), so, by induction hypothesis,

gl. dim. A=gl. dim./A/^n—2.
(3)=>(1). Clear. This completes the proof.

Proposition 1'. If^ i_1^0for2^i^n andifX21=l then gl. dim. A<

coif and only if gl. dim. e' Ae' < co where e' = ^j=2eu. Further, if'gl. dim. A

= a<co, gl. dim. e'Ae' = y<oo, then y^a^y + 1.

Proof.    Similar to Proposition 1.
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We now look at the triangular orders in Mn{K) with global dimension

H —1.

Lemma 7. Let As=(ml") be a triangular order in Mn(K), «^3. If

gl. dim. A = n — 1 then hdA J¿ = i—1 for 1^;^« —1 a«c?hdA Jn=n— 3.

Proof. By induction on n. For «=3, the only triangular order of global

dimension two is 03, for which the assertion is trivial. Let «^3. Since

gl. dim. A—n—1, therefore by Theorem 1, A¿t¿_i=l for 2^/'^«. Hence,

by Proposition 1 and Theorem 1, gl. dim. eAe=n—2. As seen in Lemma

3 and Proposition 1, /(eAe)^©^1 #7„ hdA J¿ = hdeAc FrJi iïi^n — l and

hdA(¿FJn^1)eA=hdeAe¿?rJr¡_l; by induction hypothesis, hdA./¿ = hd6Ae ¡FJt

= /-l for l^/^n-2, hdA(&rJn_1)eA-=hdeAe&rJn_1=n-4. Since

■FJn is isomorphic to a right ideal of eAe, therefore hdA/n=hdeA(, ¿FJ^

«—3, by Lemma 2. By hypothesis gl. dim. A=n — 1. Hence, by

Lemma 1, hdA Jn_l=n — 2. So, by (*) in Proposition 1, hdA/„ = «—3.

This completes the proof.

Theorem 2. Let A»(*»Aíí) ¿e a triangular order in Mn(K), where n^.4.

Thengl. dim. A=n — 1 if and only if ^¿,^ = 1, Xii_z—2=Xii_zfor2^i'^n.

Proof. For the "only if" part, we proceed by induction on n. Let w=4.

Since gl. dim. A = 3, therefore by Theorem 1, Xi,¿_i = l for 2^/'^4. By

Propositions 1,1' and Theorem 1, gl. dim. eAe=gl. dim. e'Ae'=2. Hence

A3 !=2=A4i2, X4 !=2or 3. Butgl. dim. Q4=2 [5]; so, we must have Xt1=2.

Now let «j¡4. Since gl. dim. A=w — 1, therefore by Theorem 1 and Prop-

ositions 1, 1', gl. dim. eAe=gl. dim. e'Ae'=n— 2. Now the induction

hypothesis completes the proof.

For the "if" part again we put induction on n. The assertion is easily seen

to be true for n=A. Now let «^4. By induction hypothesis, we have

gl. dim. eAe=«—2. So, Lemma 7 and its proof yield hdA/, = z'—1 for

l-^i^n—2, hdA Jn-£n— 3 and hdA(J5"/„_1)eA=«—4. Hence, by the exact

sequence (*) it is enough to prove that hdA Jn=n—3.

Let M be the right A-module obtained from Pn by replacing the last two

entries by -m2. By hypothesis Xnn_2—2—Xnn_i. So the last four entries in

M are equal, viz. *n2. Clearly, as in Lemma 3(b), 'S^FM'^M, so by Lemma

3, hdA M=\\dcAe ¿FM^n—3. The last inequality follows by observing that

¿FM is isomorphic to a right ideal of eAe. Repeating this two more times,

we get hdA M^n-5. Clearly M+tPn_l=Jn and Mr\tPn_^{3Fjn_x)eA.

By the above, hdA(.FJn_1)eA=n— 4. Hence, hd/„=n—3. This completes

the proof.

Now, we give examples of successive triangular orders in M2nn{K)

whose dimensions differ exactly by n. This disproves a conjecture of R. B.
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Tarsey [5]. We define two families A2n+] and r2n+1, «^1, of triangular

orders in M2n+1(K) such that A2„+1 and r2n+1 are successive, gl. dim. A2n+1 =

n and gl. dim. F2n+1 = 2n.

For n=\,

IR    R    R\

A8=  \m    R    R\,        r3 =

For n = 2,

R     R     R   R\

R     R     R    R

A, =  I   mt   m     R     R    R   \ r   _  I   ™2   m     R     R    Rl5 =   |   m*    m     K      K    K   | p   _

3    »22     ¡a«2    -»l    Rj

It is easy to see that gl. dim. A3=l, gl. dim. r3=2, gl. dim. A5=2,

gl. dim. T5=4, A3 and T3 are successive and A5 and T5 are successive.

For «^3, let Un be a triangular order in Mn(K) in which all the entries

on the main subdiagonal are m and all the entries below the main sub-

diagonal are m2. Let Vn n+1 = (»/■•), where dtí are as specified below:

(a) 6,^ = 0, n+1 = \; 6'in = d^+1^2 for 2^i^n.

(b) 0i.„-i=2; 6^=3 for 2<j£«.
(c) O^^for l^;^«-2.

(d) All the remaining 0, , = 4.

Let

A>fl+i = (U^x      Mn+Kn(R)\

n,n+l u

and F2n+1 is obtained from A2n+1 by replacing (n+2, «)th entry m by m2.

Trivially, A2n+1 and Y2n+i are successive.

By Theorem 2, gl. dim. r2„+1 = 2n. We claim gl. dim. A2n+1=n. Let Pt

and J¿ denote the /th row of A2n+1 and its Jacobson radical. Clearly,

J1^P2. Hence, hd ^=0. Since

(#)       tP^ + Pi+1 = f,       tPt_, n Pi+1 s /,_,    for 2 ^ / ^ »,

therefore, by induction it follows that hd/¿ = /—1 for 2^i^n. Since

tPn+Pn+3=Jn+2, fPn<^Pn+3~Pn+2, therefore hdJ„+a—1. Now observing

that (#) holds for n + 3^i^2n, we get, by induction, hdJi = i—n — l for

n + 3<i^2n.

Let Mi=tP1+Pi+1 for 2^/^n—1. Clearly fPxn/VuS^-i for 3^
i^n — 1 and M2=J2. Hence, by induction, hd 7v/¿ = í — 1 for 2^/^n—1.

But iA/n„1+ßn+2=/„+1 and tMn_xr\Pn+2^Pn. Therefore, hd/B+1=n-2.
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Let Ni = tPn+Pn+i for 3^i^n. It is easy to see that tP„ riP^^N^ for

4^/^n and N3=Jn+2. Therefore, by induction, hd Nt = i—2 for 3^/^n.

Since Jtot+i^NK, therefore hdJ2n+1=n—2. Hence, hd/(A2n+1)=« — 1.

Therefore, by Lemma 1, gl. dim. A2„+1=k. This completes the proof of

our claim.

Remark. Using the usual arguments about localization and com-

pletion, it is easy to see that our results hold when R is a Dedekind domain

rather than DVR. ; cf. [5].
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