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OSCILLATORY  SOLUTIONS  FOR  A  GENERALIZED

SUBLINEAR  SECOND  ORDER  DIFFERENTIAL EQUATION

J.   W.   HEIDEL1  AND  I.   T.   KIGURADZE

Abstract. A criterion is given for the existence of oscillatory

solutions for equation (1) below which generalizes a recent result for

the sublinear case of (1')- The present theorem is the analogue of a

result of Izjumova for the generalized superlinear case.

We consider the question of the existence of oscillatory solutions of the

equation

(1) u" + f(t, u) = 0

where the function f(t, u) is defined and continuous in the region OíSí< oo,

— oo<«<oo, and/(/, 0) = 0.

Equation (1) is a generalization of

(1') u" + q(t)u" = 0

which is called superlinear if y>\ and sublinear if 0<y<l. A criterion for

the existence of oscillatory solutions for (1') in the superlinear case was

first given by Jasny [6] and Kurzweil [8]. A short proof of the Jasny-

Kurzweil theorem was given by the second author [7]. The theorem was

then generalized to (1) in several directions, first by Izjumova [5] and then

by Coffman and Wong [2], [3].

The analogue of the Jasny-Kurzweil result for the sublinear case has

recently been established by Hinton and the first author [4] and Chiou [1].

The purpose of the present note is to generalize this result by giving the

analogue of Izjumova's theorem.

Theorem.    Suppose that for every fixed x>0, the function

(2) <j>(t, x) = t3'2f(t, ti'2x)

is nonnegative, continuously dijferentiable, and nondecreasing in t in the
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interval [/0, oo) where /0>0. If, moreover, <f>(t, —x)=—<f>(t, x) and

(3) liminf(<£(/0,x)/x)>i,

then equation (1) has at least one nonsingular oscillatory solution.

Proof.   Let *(f,x)«2 $%4*\t,s)ds.
In view of (3), positive constants y and ô can be found such that

(4) 4>(t0, x) > x(l + y)/4   for 0 < x ^ <5

and

(5) $(/„, x) > x2(l + y)/4   for 0 < x ^ á.

Let «(/) be a solution of equation (1) which satisfies the initial condition

(6) u(t0) = 0,       0 < tQu'2(t0) < o2y¡4,

at/0.

Multiplying both sides of equation (1) by /3/2(/~1/2«(/))' and integrating

from /0 to /, we obtain

(7) Qtu' - uß^Jtf + (&(/, KO) - ïv2(t) = t0u'2(t0) + f'^írd*!» dT,
•I ta Or

where v(t) = t~1/2\u(t)\.

Let w(t)=max{v(s):t0-<s^t}.

Since 9<D(/, x)/3i is nondecreasing with respect to x in the interval

(r0, oo) we have

(8)
f'dOfo ü(t)) j    ̂  f'3<I>(T, W(0)  , _,       ,„        ..

Therefore from (6), (7) and (8) it follows that

(9) O(/0, w(t)) - \w\t) < ^ + <D(/, w(0) - cD(/, „(0).
4

Since iv(/0)=0 and iv(/)5:0 for /^/0, it is clear that

(10) 0 ^ m(/) < Ô

in some right neighborhood of /„. We will now show that (10) holds for all

/^/0. Suppose to the contrary that there is a /x>/0 such that w(tx) = ô and

that tx is the smallest such value of/. Then w(tx) = v(tx) and so from (5) and

(9) it follows that

(7/4)»v2(/1) < <52y/4,

a contradiction.
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Consequently

(11) r1'2 |w(OI = v(t) <ô   for 1 > ,0.

Thus we have proven that u(t) is extendable on the whole interval [t0, oo)

and satisfies the inequality (11). On the other hand, from (7) it is clear that

\u(t)\ + \u'(t)\y¿0 for r^?0- Consequently, u(t) is a nonsingular solution.

We will prove that u(t) is oscillatory. Suppose to the contrary that for

some t*>t0, u(t)^0 for t>t*.

Then in the interval [i*, + co) equation (1) can be written in the follow-

ing form: u"+a(t)u=0, where a(t) = t~2[<p(t, v(t))]¡v(t).

According to (4) and (11),

a{t)>i^mt-2>i+ji'r2 fort>,..
W-      v(t) -     4

Thus, according to Kneser's theorem, u(t) is an oscillatory function.

The contradiction thus obtained proves the theorem.

Corollary ([1]). IfO<y<\, q(t)tiy+3)/2>0 and (q(t)t(y+3)/2)dldt^0,

then every solution u(t) of (V) such that u(ta)=0 and \u'(t0)\ is sufficiently

small is oscillatory.
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