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A  HYPONORMAL  OPERATOR  WHOSE SPECTRUM

IS  NOT A  SPECTRAL  SET

BHUSHAN  L.   WADHWA

Abstract. Clancey has given an example of a hyponormal,

nonnormal operator whose spectrum is thin and hence not a

spectral set. In this note, using fairly simple techniques, we give

an example of a hyponormal operator whose spectrum contains a

disc and is not a spectral set.

1. Introduction. An operator F on a Hubert space 3$? is called hypo-

normal if T*T—TT* is a positive operator. An interesting subclass of

hyponormal operators is the class of subnormals : an operator T on ¿4?

is called subnormal if Fis the restriction of a normal operator acting on a

Hubert space Jf^Jt. A compact subset X of the complex plane, con-

taining the spectrum of T (denoted by a(T)), is called a spectral set for T

if ||/(7)||áll/IU for a11 rational functions/with poles off X. It is well
known that the spectrum of a subnormal operator is a spectral set (see

Lebow [4], Berberian [1]). Clancey [2] showed the existence of hypo-

normal operators whose spectrum is thin (in the sense of von Neumann)

and hence is not a spectral set.

In this note, using fairly simple techniques, we give an example of a

hyponormal operator whose spectrum is the union of a closed disc and

an annulus and is not a spectral set.

2. Preliminaries. If a(T) = ax\Ja2 where ax and a2 are closed, nonempty

and disjoint sets, then it is well known (see Riesz and Sz.-Nagy [5, p. 421])

that Jf'=t3f1-r-t#'2 where Jfx and <3f2 are invariant under T and

o(T\jf?i) = cri, ( = 1, 2. Also the subspaces Jtx and ^f2 have the property:

if JÍ is any subspace of Jf invariant under F such that a(T\J¿)<^ a¡ then

Jí^yfi, i=\ or 2 (see Colojoara and Foias [3, p. 26]). We shall refer

to this result as the Riesz Decomposition Theorem. Furthermore, it was

observed by Lebow [4] and Williams [6] that if in the above case we assume

that a(T) is a spectral set for T, then .?f =¿f1©Jf 2.

3. The example. Let fflx and ¿F2 be two subspaces of a Hubert space

¿f with the property that there are orthonormal bases {et}?=_œ and
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{/j}j=i °f ^\ and <^2 respectively such that (/, e¡)=0 for all i and j

except when z'=0 and/=1. Let (/, e0) = d and suppose that O<|0|2< 1/32.

Let V.jrr+JTi;

Ve( = 4ei+x,       i < 0,        Ve0 = 8ex,    and

Vei = 20ei+X,       i>l.

Let U'.Jz^2.—>t^2 5

£//=/,    and    C// = 3/+1,       / ^ 2.

First of all we remark that Jf=Jf j -j-Jf 2 is a closed subspace of Jf.

Thus T—V+ U is a bounded operator on ^; in other words F=(£ ¡7)

on jex+Jif2. Simple computations show that

r*/i = 4ee_l5 F*e0 = 4^,

r*/2 = p/i - 0/*„.        F*ei = %pe0-WPfx,

T*f = 3/_x      for i £ 3,

F*e¿ = 20eí_1   for iä2, and

r*e< = 4e,_,     for i ^ -1, where p = (1 - |ö|2)^.

Let P denote the orthogonal projection of Jif onto the span offx,f2, e0

and ex. It is quite easy to see that ||F*(/-P)x||^||r(/-F)x|| for any

x g je and (I-P)T*TP=PTT*(I-P)=0. Thus in order to show that F

is a hyponormal operator, it is enough to prove that ||F*x||^||Fx|| for

all x in the span offx,f2, e0 and ex.

For any a, ß, y, ô e C,

WT^af + ße. + yf + ee.W

= ||4(afl + ß)e_x + (yP - UBP)fx + (SÔP - ydP)e0\\2

= 16 |aS + ß\2 + P2 H (y - 8(59)/ + (8<î - y6)e0\\2

^ 32{|a|2|0|2 + \ß\2} + 4(1 + |0| V[|y|2 + 64 |<5|2].

On the other hand

||F(a/ + ße0 + yf2 + óex)\\2 = ||a/2 + Sßex + 3yf3 + 20<5e2||2

= |a|2 + 64 l^l2 + 9 |y|2 + 400 |<5|2.

Since 0<|0|2<l/32 it follows that (l+|ö|2)p2<5/4 and now it is easy to

see that

||F*x||2 ^ ||Fx||2   for x = o/i + ße0 + yf2 + ôex.

Thus F is a hyponormal operator.
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We now wish to show that a(T) is not a spectral set for T. First note

that o(T\jfx) = o(V)={zeC:4^\z\<:20} = (7x and o(T\jf2) = o(U) =

{ze C:|z|_3} = ct2. Thus o-(F) = o'1Uo-2, a¡ is closed and o-1no-2=<I>. If

a(T) were a spectral set for T, then by the Riesz Decomposition Theorem

and by the observation in Lebow [4], $f would equal ¿£"x®$t"2 where

a(T\3f'd = cri, i=l,2. Since je=Jfx+je2 and o-(F|^fi) = o-¿ it follows
from the preliminary remarks that M'^^'i, j'=l,2. Hence 2fé?x=M"x

and ¿f2 = Jf2. Thus if a(T) were a spectral set for T, ^x would be

orthogonal to Jf 2. But Jf j is not orthogonal to ¿c°2 and hence a(T) is

not a spectral set for T.
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