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ON  FIXED  POINTS  OF  NONEXPANSIVE
MAPPINGS  IN  NONCONVEX  SETS

W.   G.   DOTSON,  JR.

Abstract. Two theorems are proved concerning the existence

of fixed points of nonexpansive mappings on a certain class of non-

convex sets. This work extends the author's previous work on star-

shaped sets.

Suppose S is a subset of a Banach space E, and let F={f}xeS be a

family of functions from [0, 1] into S, having the property that for each

a e S we have/(l) = a. Such a family Fis said to be contractive provided

there exists a function <j>: (0, l)^-(0, 1) such that for all a and ß in S and

for all / in (0, 1) we have

\\Ut)-fß(t)\\ <<f>(t)\\*-ß\\.

Such a family F is said to be jointly continuous provided that if i—>-r0 in

[0, 1] and a->a0 in S then f(t)^-f0(t0) in S.

Theorem 1. Suppose S is a compact subset of a Banach space E, and

suppose there exists a contractive, jointly continuous family F of functions

associated with S as described above. Then any nonexpansive self-mapping T

of S has a fixed point in S.

Proof. For each «=1,2, 3, •• -, let k„ =«/(« +1), and let Tn:S^S

be defined by T„x=fTx(k,) for all x e S. Since T(S)^S and 0<rCK<l,

we have that each 7*„ is well-defined and maps S into S. Furthermore, for

each n we have, for all x, y in S,

\\T„x - T„y\\ = \\fTx(k„) -fT!l(k„)]\ = 4>(k„) \\Tx - Ty\\ = <p(k„) \\x-y\\,

so that, for each n, T„ is a contraction mapping on S. As a compact (hence

closed) subset of the Banach space E, S is a complete metric space. There-

fore each T„ has a unique fixed point xn e S. Since S is compact, there is a

subsequence {x„.} of {x„} such that x„ —»-some x e S. Since Tn x„ =x„. we
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have Tnxn—+x. But Tis continuous (since nonexpansive), and so Txn—*■

Tx. The joint continuity now yields

Tnxn¡ =fTXn¡(K)^fTA\) = Tx.

It follows that Tx=x, since E is Hausdorff.    Q.E.D.

A special case of the above theorem is Theorem 1 of [1], where S is

assumed to be star-shaped. With/7 a star-center and Ar„=«/(«+l) we have

fx(t) = (l-t)p+ta  so  that   Tnx=fTx(kn)=(l-kn)p+knTx.   One  easily

checks that

\\m-fß(t)\\ á'i«—ai
so that we can take (f>(t) — t for 0<r<l ; and it is a well-known fact that

f(t) = (l—t)p + ta. is jointly continuous in t and a.

A family F={fa}aeS of functions from [0, 1] into a set S will be called

jointly weakly continuous provided that if t-+t0 in [0, 1] and a^a0 in S

then/a(r)—^/"ao(fo) in S (here —» denotes weak convergence).

Theorem 2. Suppose S is a weakly compact subset of a Banach space E,

and suppose there exists a contractive, jointly weakly continuous family F

of functions associated with S as described above and before Theorem 1.

Then any nonexpansive weakly continuous self-mapping T of S has a fixed

point in S.

Proof. As in Theorem 1, let kn=n/(n+l) and define Tn:S~>S by

Tnx=fTx(kn) for all x e S and for all «=1, 2, 3, • • •. Then, as before,

each Tn is a contraction mapping on S. Since the weak topology of E is

Hausdorff and 5 is weakly compact, we have that 5 is weakly closed and

therefore strongly closed. Hence S is a complete metric space (with the

norm topology of the Banach space E), and so each Tn has a unique fixed

point x„ e S. By the Eberlein-Smulian theorem S is weakly sequentially

compact. Thus there is a subsequence {x„} of {xn} such that xn—>■

somex e S. Since Tnx„ —xn we have Tnxm—*x. Since 7" is weakly contin-

uous we have Txn—"-Tx. The joint weak continuity now yields Tnxn_ =

fTx (kn)^fTx(l) = Tx. Since the weak topology is Hausdorff, we now get

Tx=x.    Q.E.D.
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