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FIXED  POINT THEOREMS  IN  REFLEXIVE
BANACH  SPACES

R.   KANNAN

Abstract. In this paper fixed point theorems are established

first for mappings T, mapping a closed bounded convex subset K

of a reflexive Banach space into itself and satisfying

|| Tx - Ty\\ g i{\\x - Tx\\ + \\y - Ty\\},        x,yeK,

and then an analogous result is obtained for nonexpansive mappings

giving rise to a question regarding the unification of these theorems.

Let X be a reflexive Banach space and let K be a nonempty bounded

closed and convex subset of X. In [10] Kirk proved the following theorem:

If F be a nonexpansive mapping of K into itself i.e., \\Tx — Fj||_||x—_y||,

x, y e K, and if K has normal structure, then F has a fixed point in K. This

result was also proved in a uniformly convex space X by Browder [2],

Göhde [4] and Goebel [5], the reflexivity of the space and the normal

structure of K being consequences of the uniform convexity of X.

In this paper first we establish some fixed point theorems for mappings

T of K into itself which satisfy

|| Tx - Ty\\ ̂  «I* - Tx\\ + \\y - Ty\\},        x, y e K.

Mappings T of this type will be referred to as having property A over K.

Such mappings have been used to study fixed point and other allied prob-

lems in [6], [7], [8], [9]. Then we obtain a theorem, analogous to the one

proved for a mapping T having property A over K, for nonexpansive

mappings. We conclude the paper with some observations on this last

theorem.

Before going to the theorems, we first recollect the following definitions.

Definition 1 (Normal Structure [10]). A bounded convex set K in

a Banach space X is said to have normal structure if for each convex subset

S of K which contains more than one point, there exists x e S such that

supvesllx— j|| <à(S), ô(S) being the diameter of S.

Definition 2 [9]. A mapping F of a bounded subset A" of a Banach

space X into itself is said to have property B on K [9] if for every closed
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convex subset F of K, mapped into itself by T and containing more than

one element, there exists x e F such that ||x — Tx\\<supyeF\\y — Ty\\.

It has been shown in [9] that if K has normal structure then a mapping

T, having property A on K, of K into itself must have property B on K but

not conversely.

Definition 3. If Fis a mapping of ATinto itself such that for each x e K,

lim„<5[O(F'!x)]<(5[0(x)] when <5[O(x)]>0, where 0(T''x) = {Trx, Tr+1x,

■ ■ ■}, r^.0, T°x=x, then T is said to have diminishing orbital diameters

over K [1].

Throughout this paper, unless otherwise mentioned, A' is a reflexive

Banach space and K a nonempty bounded closed convex subset of X.

We now prove our theorems.

In [8] the following theorem was proved.

Theorem. Let T be a mapping of a nonempty bounded closed and convex

set K of a reflexive Banach space X into itself and let T have property A

over K. Then if supyeF\\y — Ty\\^ô(F)j2 for every closed convex bounded

subset F of K mapped into itself by T, T must have a unique fixed point in K.

We now prove the following theorem which is obviously an improve-

ment on the preceding result.

Theorem 1. Let T be a mapping of a nonempty bounded closed

and convex subset K of a reflexive Banach space X into itself and let T

have property A over K. Then if supyeF\\y — Ty\\<.ô(F) for every nonempty

bounded closed convex subset F of K, containing more than one element

and mapped into itself by T, T has a unique fixed point in K.

Proof. Smulian [11] has characterized a reflexive Banach space as

follows: X is reflexive if and only if every decreasing sequence of non-

empty bounded closed convex subsets of X has a nonempty intersection.

Let T be the family of all closed convex bounded subsets of K, mapped

into itself by T. Obviously Y is nonempty. Applying Zorn's lemma, we get

a minimal element S in Y, S being minimal with respect to being non-

empty, bounded closed and convex and invariant under T. If S contains

only one element, then that element is a fixed point of T. If not, let S con-

tain more than one element.

Now for x, y e S,

WTx - Ty\\ ̂  H^-7^ + S^-M < sup ||, - Ty\\.
2 2 veS

Hence, T(S) is contained in the closed sphere C with Tx as centre and

supveS\\y — Ty\\ as radius. Also SnCis invariant under T. Therefore by the

minimality of S it follows that Se C i.e., \\Tx—y\\^supueS\\y — Ty\\, for
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every y e S. Hence, for any arbitrary but fixed x e S, we have

(1) sup \\Tx-y\\ = sup ||j - Fv||.
veS yeS

Let 5" = {z eS^sup^sllz— j||=sup1/ES||_i' — 7y||}. Obviously S' is closed,

convex and nonempty (Tx e S'). Again if z e S', then z e S and hence

Tz e S' by (1). Hence 5" is invariant under F. Also

Ô(S') < sup \\y - 7>|| < f5(5)   by hypothesis.
vsS

Hence S' is a proper subset of S, which contradicts the minimality of S.

Hence 5 has only one element which is a fixed point of T. The unicity of

the fixed point follows from the fact that if x=Tx, y=Ty then

II II IT T   II   <   llX-r*H    ,    ll^-^ll n      •
\\x -y\\ = \\Tx - Ty\\ ^-+-~— = 0   i.e.,   x = y.

Theorem 2. Let T be a continuous mapping of a closed convex bounded

set K of a reflexive Banach space X into itself and let T have properties A

and B over K. Then T has a unique fixed point in K.

Proof. As in the previous theorem let S be the minimal element in X

with respect to being closed, convex, bounded and invariant under T.

If S contains only one element, the theorem is obvious. If not, by prop-

erty B, there exists x e S such that

(2) ||x - r*| = r < sup ||j, - 7>||.
yeS

LetF={xe5:||x-Fx||=/-}. IfxeF, then since

||Fx - F x\\ =-+
2 2

we have  \\Tx-T2x\\^r which implies T(P)<=P.  Let F' = cl co(FF). If

z eP', then any one of the following three cases may arise:

(1) zeTP and since TP<=P, hence Tz e P'.

(2) z=2i KiTZi, ai=0, 2 «i-l and z{eP.

||z - Tz|| = 1(2 a¿Fz¿) - Tz\\ = 2 «4 IT* - Tz\\

± yyf||z-Fz||   |   ||Zi-TZi||

2 2

= 2*^^-4 sincez¡eP)

\\z - Fzll      r

2 2

\\z — Tz\\^r which implies z eP and hence Fz e TP^P'.
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(3) z is a limit point of F', in which case by the continuity of Fit follows

that z g P and hence Tz e P'.

Thus P' is a closed, convex subset of 5 which is invariant under Fand,

for every element z of P', \\z — Tz\\^r, which implies by (2) that P' is a

proper subset of S. This contradicts the minimality of S. Hence 51 contains

only one element. This element is the unique fixed point of F, unicity being

true as seen as in Theorem 1.

If X is a uniformly convex Banach space, then K must have normal

structure and as already noted [9, Theorem 5] normal structure in K im-

plies property B in K for a mapping F having property A on AT and map-

ping K into itself. Hence we have

Theorem 3. IfX is a uniformly convex Banach space and K is a nonempty

bounded closed convex subset of X mapped into itself by a continuous

mapping T having property A on K, then T has a unique fixed point in K.

Remark. It should be noted that the reflexivity of X can be replaced

by weak compactness of K in Theorem 2.

Corollary. Let K be a nonempty, closed, convex bounded subset of a

Banach space X and let T be a continuous mapping of K into itself having

properties A and B over K. If M is a weakly compact subset of K such

that wc{ F"x} nM# 0 for each x e K, where wc A denotes the weak closure

of A, then T has a unique fixed point in K.

Proof. If H be any nonempty closed convex subset of K and if H is

mapped into itself by F, then for xeH, wc{Fnx}nM# 0. Hence //n

M/ 0. Using the weak compactness of M we can now obtain a subset Kx

of ./£ minimal with respect to being nonempty, closed convex and invariant

under F and KXC\M^ <z. The rest of the proof follows similarly as in

Theorem 2.

Theorem 4. Let T be a continuous mapping of a bounded compact

convex subset K of a Banach space X into itself and let T have property A

over K. Then T has a unique fixed point in K.

Proof. Let 5 be the minimal element with respect to being closed,

convex and invariant under F. Now compact convex subsets of a Banach

space have normal structure [3]. Hence F has property B on S [9, Theorem

5]. We now proceed as in Theorem 2 to complete the proof.

Theorem 5. Let X be a reflexive Banach space, H a closed convex

subset ofX and K a nonempty bounded closed convex subset of H. Let Tbe a
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continuous map of K into H such that

(1) \\Tx-Ty\\^2{\\x-Tx\\ + \\y-Ty\\},x,yeK;

(2) T maps dnK, the boundary of K relative to H, into K;

(3) if F be any closed convex subset of K containing more than one element

and if G be a subset of F such that TG^F then there exists x e G such that

l|x-rx||<supS6i.|l.y-?>||.
Then T has a unique fixed point in K.

Proof. Let Y be the family of all closed convex subsets F of H such

that FnK?¿ 0 and F: FnK~*F. Obviously HeY.lf {Fx} be any descend-

ing chain of subsets of Y then the weak compactness of each FxnK

implies that fo K, where F=f] Fx, is nonempty. Also T:FnK-^>-F because

T:FxnK->Fx for each a. Hence by Zorn's lemma there exists a minimal

element S in Y, S being minimal with respect to being closed, convex

and such that SnK^0 and T:SnK-*S.

We may assume dsK?¿0 for otherwise S^K and T:SnK^-S implies

F: S—>S and then the theorem would follow from Theorem 2 if one uses

hypothesis (3). Now dsK^dnK. Hence T:dsK^K. Also T:SnK-+S.

Hence F maps 3sA"into SDK. If SnK contains only one element z, then

the nonemptiness of dsK<^SnK implies that z e dsK and T:dsK~^SnK

implies that Tz=z which proves the theorem.

If SnK contains more than one element, we will show that we arrive at

a contradiction. By (3) there exists x e dsK such that

||x - Fx|| = r <  sup  \\y - Ty\\.
yeSr\K

Let F={z e SnK: \\z — Tz\\<r} and letF'=cl co(FF), the closed convex

hull of TP. Since x e dsK, Tx e SnK i.e., Tx e K. Hence TxeP''r\K.

Also let zeP' C\K. We show that Tz e P'. We do this as in Theorem 2.

Here we give outlines only for the case when z=Tzx, zx eP. Now zxeP

implies that z, e SnK and hence z=Tzx e S. Also z eP'C\Kgives z e K.

Hence z e SnK and we get

l|z - Fz|| = \\Tzx - T(Tzx)\\ ^ \\zx - Tzx\\,    by (1),

Thus z e P and hence Tz e TPcp'.

Hence we find that P' is a closed convex subset of S such that P' nK=

0 and T:P'nK—*P'. Also as we have shown above zeP'nK implies

||z — Tz||<supï6sr\KWy — Ty\\. Hence P' is a proper subset of S which is

a contradiction.

Corollary. Let X be a reflexive Banach space and K be a nonempty

bounded closed convex subset ofX. Also let T be a continuous mapping of K
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into X such that

(1) \\Tx-Ty\\^i{\\x-Tx\\ + \\y-Ty\\}, x, y e K;
(2) T maps the boundary of K into K;

(3) if F be a closed convex subset of K which contains more than one

element and if G be a subset of F such that TG <= F then there exists x e G

such that ||x — Fx||<supveG||j> — Ty\\.

Then T has a unique fixed point in K.

A theorem similar to Theorem 6 for nonexpansive mappings may be

seen in [12].

We now obtain a result analogous to an equivalent form of Theorem 2

for nonexpansive mappings. To this effect we first have the following

proposition. We recall that X is a reflexive Banach space and K is a non-

empty bounded closed convex subset of X.

Proposition 1. Let T be a mapping of K into itself having property A

over K. Then the following statements are equivalent.

(a) F has property B over K.

(b) For every nonempty bounded closed convex T-invariant subset F of K

which contains more than one element there exists x e F such that

supjx — Trx\\<supz,veF\\z — Ty\\. (This property would be referred to as

property C.)

Proof. To show that (a) implies (b) it is sufficient to see that if x be

the element such that ||x — FxIKsup^^Hy — Ty\\ then the element TxeF

would satisfy the hypothesis of (b) because ||Fx — Fr(Fx)||^||x — Fx|| by

the nature of F.

We now show that (b) implies (a). If possible let (a) be not true. Then

there exists a nonempty bounded closed convex subset F of K which is

F-invariant and contains more than one element such that, for every

xeF,

||x - Fx|| = sup || y - Fyll = 0,    say.

Now consider F' = cl co(FF). For any two elements z, w of F', it can be

easily seen as in Theorem 2 that ||z— Tw\\ ̂ p. Also since F' is F-invariant

and is contained in F, it follows that, for every z g F',

sup ||z - Frz|| = sup \\z - Tw\\
r z,w£b"

and this is in contradiction with (b). Hence the proposition.

We now obtain the following theorem for nonexpansive mappings, the

proof of which is essentially the same as that of Theorem 2 [1].
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Theorem 6. With the usual assumptions on X and K let T be a non-

expansive mapping of K into itself such that T has property C over K. Then

T has a fixed point in K.

Combining Theorems 2 and 6 we can now write

Theorem. Let X be a reflexive Banach space and let K be a nonempty

bounded closed convex subset ofX. Let T be a continuous mapping of K into

itself such that T has property C over K. If T satisfies either

(a) \\Tx - Ty\\ ^ «Jjc - Fx|| + \\y - Ty\\},    x,yeK,

or

(b) \\Tx - Ty\\ ^ \\x -y\\,        x,yeK.

Then T has a fixed point in K.

This gives rise to the following question.

Question. What hypothesis on F is necessary besides property C over

K, the other hypothesis on X and K being the same as above, in order to

ensure the existence of a fixed point for F?

In the rest of the paper we make some observations on property C.

Proposition 2. If K has normal structure then T has property C on K

where T is a nonexpansive mapping of K into itself.

Note. As mentioned earlier, that normal structure implies property B

over K for a mapping F having property A over K, or equivalently by

Proposition 1, property C over K has been proved in [9].

Proof. We proceed exactly as in Proposition 1. That the converse of

the above proposition is not true can be easily seen from the following

example [13].

Example. Let B be the space isomorphic to the Hubert space with

norm defined (forx g H)by ||x||=sup{i||x||ff, |x„|}. Then K={x: \\x\\H^l

and x,^0 for all /} does not have normal structure. It is easy to define non-

expansive mappings T on K for which property C is true.

A connection similar to that of Proposition 2 exists between the concept

of diminishing orbital diameters and property C. The proof of the following

proposition is similar to that of Proposition 1.

Proposition 3. For a nonexpansive mapping T of K into itself, T has

diminishing orbital diameters over K implies T has property C over K.

Note. It must be noted here [9] that, for a continuous mapping T

having property A over K, the statements F has diminishing orbital di-

ameters over K and F has property C over K are equivalent. That the

converse of Proposition 3 is not true can be easily seen.
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Remark. After this paper was communicated, Theorem 3 was proved

recently by P. Soardi [Boll. Un. Mat. Ital. 4 (1971), 841-845]. The author
would like to thank the referee for his suggestions.
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