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A  PROBLEM  IN  ADDITIVE  NUMBER  THEORY

DONALD  QUIRING

Abstract. For every real number a, 0<a<l, a sequence

A = {a¡, a2, ■ • •} is constructed for which the density of A is a and

A has the following property: Given any n distinct positive integers

{blt b2, ■ ■ ■ , b„} the sequence consisting of all numbers of the form

ai+bj has density 1 —(1 —a)".

Let A = {a1, a2, • • •} and B={b1, b2, ■ • •} be increasing sequences of

positive integers. The sequence A+B is defined as the increasing sequence

consisting of all the sums a^b,. Let A(n) be the number of elements of A

that are less than n. The limit A(n)[n, if it exists, is called the density of A

and designated d(A).

P. Erdös and A. Renyi [1] have shown that for every <x, 0<a< 1, there

exists a sequence A of density a which has the property that for any

infinite sequence B, d(A + {b1, • ■ ■ , b„})=l — (1— a)". This implies

d(A+B)=l. The purpose of this paper is to provide examples of such

sequences.

If a is rational we proceed as follows. Express a as a quotient of natural

numbers, a.=p¡q, q>p. List all the natural numbers in order in base q

notation to obtain a sequence

S = {sus2, ■■■},       0<Si£q-l.

Define A by A = {i\0^si^p— 1}. Then d(A) = a. and if B is an increasing

sequence of positive integers d(A + {b1, ■ ■■ , bn})=l — (l — a.)n.

We prove that A has these properties in the case a= 1/2. The other cases

can be handled by essentially the same method.

List the natural numbers in order in base 2 notation separated by

hyphens as follows:

1-10-11-100-101-110-111-.

We treat this list as a sequence of digits $u s2, ■ ■ • with hyphens between

sx and s2, s3 and st, etc. Define {(s¿, r¿, «,)} by letting s¿=0 or 1 be the /th

entry in the above sequence /¿ = inf3 (there is one hyphen between the /th

entry and the i—jth entry), and «¿ = inf, (there is one hyphen between the

/th entry and the /+/th entry).
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Let A = {i\sj=0}. We show that d(A + {bx, ■■■ , bn})=l-2~n for an

arbitrary increasing sequence B. The case n=\ will then give us d(A)=\¡2.

Define sequences £n and Tk by

Tn = {i | U ̂ bn + 2}   and    T\ = {/ | f, ^ bn + 2, », = k).

Let im = 'mfi(ui=m+\); that is,

m

im = 1 + 2 *2W = (m - \)2m + 2.

Define a sequence C„ as the intersection of £„ with the complement of

A + {bx, ■ • ■ , &„}. Since i/(£„) is clearly equal to 1 it suffices to show

rf(C„)=2-B. Note that Cn={i\ieTn and s++-a„— • — *_♦-1}

and that for im^i<im+1, ^(i)«!*^*-1 £„(«')• £„(0 is the number of

elements of £„ that are less than i.

Among any 2b«+k consecutive elements of £* there are 2"n+k~n elements

of C„. This is because among any 2b"+k consecutive natural numbers every

possible combination of the last bn+k digits appears exactly once.

Therefore, for all i,

(C„ n £*)(/) - 2bM~n ^ 2""T*(0 £ (CB n £*)(<) + 2b"+k~n,

and for im^i<im+1, m>b„,

m—bn—1 m—'>n—1

Cn(/)-   2   2wt-»<2-T,(l)áC,(0+   2   2""+k"í-
k=l ¡fc-1

So CB(0-2m-»<2-»r„(i)<CB(i)+2m-" and |Cr,(/)//-2-"£n(/)//|<2'"-n//.

Since we are assuming ¿>/m>(m—1)2W, we have \Cn(i)fi— 2_"£„(/)//|<

2~nl(m—\). We know that lim,-..«, Tn(i)ji=d(Tn)=l and it follows that

lim^w |C»(0//-2-"|á2-"/(/«-l) for all w. We conclude that i/(C„) = 2-"
and the proof is complete.

We turn now to the case where a is not rational. Express a as a limit of

rational numbers x¡, a = lim a;, and let Ax. be the sequence with density

oLj constructed above. Compose Ax of increasingly long segments of the

sequences Ax as follows.

Define inductively integers A/3 and finite sequences E¡ by

E, = (AXi n (1, Nx)) n (Aa2 n (^ + 1, N2)) n • • •

n(^n(/V/_1+ 1,/v,)),
choosing Nj large enough that

sup |(£, + C)(A/,.)/N3. - (1 - (1 - o.,T)\ < \¡j
c
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where the supremum is taken over all subsets C of {1, 2, • • • ,j} and n is

the number of elements of C. If we let Aa = {J E¡ then Aa clearly has the

desired property.
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