A PROBLEM IN ADDITIVE NUMBER THEORY

DONALD OUIRING

ABSTRACT. For every real number α , $0 < \alpha < 1$, a sequence $A = \{a_1, a_2, \dots\}$ is constructed for which the density of A is α and A has the following property: Given any n distinct positive integers $\{b_1, b_2, \dots, b_n\}$ the sequence consisting of all numbers of the form $a_i + b_j$ has density $1 - (1 - \alpha)^n$.

Let $A = \{a_1, a_2, \dots\}$ and $B = \{b_1, b_2, \dots\}$ be increasing sequences of positive integers. The sequence A + B is defined as the increasing sequence consisting of all the sums $a_i + b_j$. Let A(n) be the number of elements of A that are less than n. The limit A(n)/n, if it exists, is called the density of A and designated d(A).

P. Erdös and A. Renyi [1] have shown that for every α , $0 < \alpha < 1$, there exists a sequence A of density α which has the property that for any infinite sequence B, $d(A+\{b_1,\dots,b_n\})=1-(1-\alpha)^n$. This implies d(A+B)=1. The purpose of this paper is to provide examples of such sequences.

If α is rational we proceed as follows. Express α as a quotient of natural numbers, $\alpha = p/q$, q > p. List all the natural numbers in order in base q notation to obtain a sequence

$$S = \{s_1, s_2, \cdots\}, \quad 0 \le s_i \le q - 1.$$

Define A by $A = \{i | 0 \le s_i \le p-1\}$. Then $d(A) = \alpha$ and if B is an increasing sequence of positive integers $d(A + \{b_1, \dots, b_n\}) = 1 - (1 - \alpha)^n$.

We prove that A has these properties in the case $\alpha = 1/2$. The other cases can be handled by essentially the same method.

List the natural numbers in order in base 2 notation separated by hyphens as follows:

We treat this list as a sequence of digits s_1, s_2, \cdots with hyphens between s_1 and s_2, s_3 and s_4 , etc. Define $\{(s_i, t_i, u_i)\}$ by letting $s_i = 0$ or 1 be the *i*th entry in the above sequence $t_i = \inf_j$ (there is one hyphen between the *i*th entry and the i-jth entry), and $u_i = \inf_j$ (there is one hyphen between the *i*th entry and the i+jth entry).

Received by the editors July 5, 1972 and, in revised form, August 1, 1972. AMS (MOS) subject classifications (1970). Primary 10L05, 10L10.

Let $A = \{i | s_i = 0\}$. We show that $d(A + \{b_1, \dots, b_n\}) = 1 - 2^{-n}$ for an arbitrary increasing sequence B. The case n = 1 will then give us d(A) = 1/2. Define sequences T_n and T_n^k by

$$T_n = \{i \mid t_i \ge b_n + 2\}$$
 and $T_n^k = \{i \mid t_i \ge b_n + 2, u_i = k\}.$

Let $i_m = \inf_i (u_i = m+1)$; that is,

$$i_m = 1 + \sum_{k=1}^{m} k2^{k-1} = (m-1)2^m + 2.$$

Define a sequence C_n as the intersection of T_n with the complement of $A+\{b_1,\cdots,b_n\}$. Since $d(T_n)$ is clearly equal to 1 it suffices to show $d(C_n)=2^{-n}$. Note that $C_n=\{i \mid i\in T_n \text{ and } s_{i-b_1}=s_{i-b_2}=\cdots=s_{i-b_n}=1\}$ and that for $i_m\leq i< i_{m+1}$, $T_n(i)=\sum_{k=1}^{m-b} i^{-1} T_n^k(i)$. $T_n(i)$ is the number of elements of T_n that are less than i.

Among any 2^{b_n+k} consecutive elements of T_n^k there are 2^{b_n+k-n} elements of C_n . This is because among any 2^{b_n+k} consecutive natural numbers every possible combination of the last b_n+k digits appears exactly once.

Therefore, for all i,

$$(C_n \cap T_n^k)(i) - 2^{bn+k-n} \le 2^{-n} T_n^k(i) \le (C_n \cap T_n^k)(i) + 2^{bn+k-n}$$

and for $i_m \leq i < i_{m+1}, m > b_n$,

$$C_n(i) - \sum_{k=1}^{m-bn-1} 2^{b_n+k-n} \le 2^{-n} T_n(i) \le C_n(i) + \sum_{k=1}^{m-bn-1} 2^{b_n+k-n}.$$

So $C_n(i)-2^{m-n}<2^{-n}T_n(i)< C_n(i)+2^{m-n}$ and $|C_n(i)/i-2^{-n}T_n(i)/i|<2^{m-n}/i$. Since we are assuming $i \ge i_m > (m-1)2^m$, we have $|C_n(i)/i-2^{-n}T_n(i)/i|<2^{-n}/(m-1)$. We know that $\lim_{i\to\infty} T_n(i)/i = d(T_n) = 1$ and it follows that $\lim_{i\to\infty} |C_n(i)/i-2^{-n}| \le 2^{-n}/(m-1)$ for all m. We conclude that $d(C_n)=2^{-n}$ and the proof is complete.

We turn now to the case where α is not rational. Express α as a limit of rational numbers α_j , $\alpha = \lim \alpha_j$, and let A_{α_j} be the sequence with density α_j constructed above. Compose A_{α} of increasingly long segments of the sequences A_{α_j} as follows.

Define inductively integers N_j and finite sequences E_j by

$$E_{j} = (A_{\alpha_{1}} \cap (1, N_{1})) \cap (A_{\alpha_{2}} \cap (N_{1} + 1, N_{2})) \cap \cdots \cap (A_{\alpha_{j}} \cap (N_{j-1} + 1, N_{j})),$$

choosing N_j large enough that

$$\sup_{C} |(E_j + C)(N_j)/N_j - (1 - (1 - \alpha_j)^n)| < 1/j$$

where the supremum is taken over all subsets C of $\{1, 2, \dots, j\}$ and n is the number of elements of C. If we let $A_{\alpha} = \bigcup E_j$ then A_{α} clearly has the desired property.

REFERENCE

1. P. Erdös and A. Renyi, On some applications of probability methods to additive number theoretic problems, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970), Springer, Berlin, 1970, pp. 37-44. MR 43 #1938.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87106

Current address: Department of Mathematics, Louisiana State University, New Orleans, Louisiana 70122