DISTORTION PROPERTIES OF ALPHA-STARLIKE FUNCTIONS

SANFORD S. MILLER¹

ABSTRACT. Let α be real and suppose that $f(z)=z+\sum_{2}^{\infty}a_{n}z^{n}$ is regular in the unit disc D with $f(z)f'(z)\neq 0$ in 0<|z|<1. If $Re[(1-\alpha)zf'(z)|f(z)+\alpha((zf''(z)|f'(z))+1)]>0$ for $z\in D$, then f(z) is said to be an alpha-starlike function. These functions are univalent and they very naturally unify the classes of starlike $(\alpha=0)$ and convex $(\alpha=1)$ functions. The author obtains the $\frac{1}{4}$ -theorem, sharp bounds on |f(z)| and |f'(z)|, and growth conditions on M(r).

1. Introduction. In this paper, we continue the study, initiated in [1] and [2], of the class of alpha-starlike functions. Our main purpose is to obtain several distortion theorems for functions in these classes. We will need the following definitions and theorems in this paper.

DEFINITION 1. Let α be real and suppose that $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ is regular in the unit disc D with $f(z)\cdot f'(z)\neq 0$ in 0<|z|<1. If

$$Re[(1 - \alpha)zf'(z)/f(z) + \alpha((zf''(z)/f'(z)) + 1)] > 0$$

for $z \in D$, then f(z) is said to be an α -starlike function. We let the class of these functions be denoted by \mathcal{M}_{α} .

THEOREM A. If $f(z) \in \mathcal{M}_{\alpha}$ then f(z) is starlike (and univalent).

THEOREM B. If $f(z) \in \mathcal{M}_{\alpha}$ for $\alpha \geq 0$ then $f(z) \in \mathcal{M}_{\beta}$, for $0 \leq \beta \leq \alpha$.

DEFINITION 2. If f(z) is starlike and $\alpha = \text{lub}\{\beta | f(z) \in \mathcal{M}_{\beta}\}$ then f(z) is said to be of Mocanu type α and we write $f \in \mathcal{M}(\alpha)$. Note that α may be infinite.

THEOREM C (INTEGRAL REPRESENTATION). The function f(z) is in \mathcal{M}_{α} , $\alpha > 0$, if and only if there exists a starlike function F(z) such that

$$f(z) = \left[\frac{1}{\alpha} \int_0^z [F(\zeta)]^{1/\alpha} \zeta^{-1} d\zeta\right]^{\alpha},$$

where the powers appearing in the formula are meant as principal values.

Presented to the Society, January 18, 1972; received by the editors February 14, 1972 and, in revised form, June 27, 1972.

AMS (MOS) subject classifications (1970). Primary 30A26, 30A32, 30A34.

Key words and phrases. Univalent, alpha-starlike, starlike, convex, Mocanu, distortion, \(\frac{1}{4}\)-theorem.

¹ This research was supported in part by a grant from the Research Foundation of the State University of New York.

Definition 1 and Theorems B and C may be found in [2] while Theorem A is in [1].

If in Theorem C we take g(z) to be the Koebe function $z/(1-e^{i\theta}z)^2$, then we obtain the alpha-starlike function

$$f_{\theta}(\alpha, z) = \left[\frac{1}{\alpha} \int_0^z \zeta^{1/\alpha - 1} (1 - \zeta e^{i\theta})^{-2/\alpha} d\zeta\right]^{\alpha},$$

where θ is real. These functions will serve as the extremal functions for the distortion theorems of $\S 2$.

In what follows, frequent use will be made of the hypergeometric functions

(1)
$$G(a, b, c; z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k)\Gamma(b+k)}{\Gamma(c+k)} \frac{z^k}{k!} = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 u^{a-1} (1-u)^{c-a-1} (1-zu)^{-b} du,$$

where Re a>0 and Re(c-a)>0. These functions are regular for $z \in D$ [6, pp. 281–283]. In addition we define the functions

(2)
$$K(\alpha, r) = r[G(1/\alpha, 2/\alpha, 1/\alpha + 1; r)]^{\alpha} = \left[\frac{1}{\alpha} \int_{0}^{r} \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho\right]^{\alpha},$$

where $\alpha > 0$.

2. Distortion properties of \mathcal{M}_{α} .

THEOREM 1. If f(z) is α -starlike, $\alpha > 0$, then for $|z| = r \ (0 < r < 1)$ we have

(3) $-K(\alpha, -r) \le |f(z)| \le K(\alpha, r).$

Equality holds in both cases for the α -starlike function $f_{\theta}(\alpha, z)$.

PROOF. We may take z=r, for the general case can be reduced to this by considering the function $f(\eta z)/\eta$ with suitably chosen η such that $|\eta|=1$.

By the integral representation for functions in \mathcal{M}_{α} there exists a starlike function F(z) such that

$$f(z) = \left(\frac{1}{\alpha} \int_0^z \frac{[F(\zeta)]^{1/\alpha}}{\zeta} d\zeta\right)^{\alpha},$$

and if we take z=r and integrate along the positive real axis $(\zeta = \rho e^{i\theta})$ we obtain

$$f(r) = \left(\frac{1}{\alpha} \int_0^r \frac{[F(\rho)]^{1/\alpha}}{\rho} d\rho\right)^{\alpha}.$$

Since F(z) is starlike we have

(4)
$$\rho/(1+\rho)^2 \le |F(\rho)| \le \rho/(1-\rho)^2,$$

and hence

$$|f(r)|^{1/\alpha} \le \frac{1}{\alpha} \int_0^r \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho.$$

Making the change of variables $\rho = ru$, we obtain

$$|f(r)|^{1/\alpha} \le \frac{r^{1/\alpha}}{\alpha} \int_0^1 u^{1/\alpha - 1} (1 - ru)^{-2/\alpha} du,$$

and on comparing this with (1), with $a=1/\alpha$, $b=2/\alpha$ and $c=1/\alpha+1$ we obtain

$$|f(r)|^{1/\alpha} \le r^{1/\alpha}G(1/\alpha, 2/\alpha, 1/\alpha + 1; r).$$

Raising both sides to the α power and employing (2), we get $|f(r)| \leq K(\alpha, r)$, which proves the right-hand inequality in (3).

To prove the left-hand inequality of (3), we consider the straight line Γ joining 0 to $f(z) = Re^{i\phi}$. Since f(z) is starlike, Γ is the image of a Jordan arc γ in D connecting 0 and $z = re^{i\theta}$. The image of γ under the mapping $[f(z)]^{1/\alpha}$ will consist in general of many line segments emanating from the origin, each of length $R^{1/\alpha} = |f(z)|^{1/\alpha} = \int_{\gamma} |df(\zeta)^{1/\alpha}/d\zeta| |d\zeta|$. Since f(z) is α -starlike, from the integral representation we know there exists a starlike function F(z) such that $df(\zeta)^{1/\alpha}/d\zeta = (1/\alpha)F(\zeta)^{1/\alpha}/\zeta$. Thus if $\rho = |\zeta|$, we deduce from (4) that

$$R^{1/\alpha} = \frac{1}{\alpha} \int_{\gamma} \left| \frac{F(\zeta)^{1/\alpha}}{\zeta} \right| |d\zeta| \ge \frac{1}{\alpha} \int_{\gamma} \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} |d\zeta|$$
$$\ge \frac{1}{\alpha} \int_{0}^{\tau} \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} d\rho,$$

and by substituting $\rho = ru$ and using (1) and (2), we obtain $|f(z)| \ge -K(\alpha, -r)$.

That the right-hand inequality in (3) is sharp can be seen by considering the function $f_{\theta}(\alpha, z)$ with $\theta=0$ and z=r. For the left-hand inequality, consider $f_{\theta}(\alpha, z)$ with $\theta=\pi$ and z=r.

REMARKS. (i) If $\alpha=1$ then (3) reduces to $r/(1+r) \le |f(z)| \le r/(1-r)$, the well-known result for convex functions.

(ii) If $\alpha = 2$ then (3) reduces to

$$[\tan^{-1}\sqrt{r}]^2 \le |f(z)| \le [\frac{1}{2}\log((1+\sqrt{r})/(1-\sqrt{r}))]^2.$$

(iii) If $\alpha > 2$, then by (3) and [6, p. 253] we have

$$|f(z)|^{1/\alpha} \le \frac{1}{\alpha} \int_0^r \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho \le \frac{1}{\alpha} \int_0^1 \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho$$

$$= \frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(1 - 2/\alpha)}{\Gamma(1 - 1/\alpha)},$$

so

(5)
$$|f(z)| \leq \left[\frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(1-2/\alpha)}{\Gamma(1-1/\alpha)}\right]^{\alpha},$$

i.e. if $f(z) \in \mathcal{M}_{\alpha}$ with $\alpha > 2$ then f(z) is bounded. The bound (5) is sharp as can be seen by considering $f_{\theta}(\alpha, z)$ with $\theta = 0$ and z = r when $r \to 1^-$.

If f(z) is α -starlike, with $\alpha > 2$, then by Theorem B and (5), f(z) will be a bounded convex function. Hence, by [3, p. 67], [4] and [5] we immediately obtain the following two corollaries.

COROLLARY 1.1. If f(z) is α -starlike with $\alpha > 2$, then f(z) extends to a continuous function on \bar{D} , the boundary of f(D) is a rectifiable Jordan curve, and $f'(z) \in H^1$.

COROLLARY 1.2. If f(z) is α -starlike with $\alpha > 2$, and if $f(z) = z + a_2 z^2 + \cdots$, then $a_n = O(n^{-1-\delta})$ as $n \to \infty$, where $\delta = \delta(f) > 0$.

We can use Theorem 1 to obtain the bound for $|a_2|$ and the analogue of the $\frac{1}{4}$ -theorem as we do in the following two theorems.

THEOREM 2. If f(z) is α -starlike, $\alpha > 0$, and $f(z) = z + a_2 z^2 + \cdots$, then $|a_2| \le 2/(1+\alpha)$, and this inequality is sharp.

PROOF. We only need to prove the inequality for $\alpha > 0$. Since, for real θ , $e^{-i\theta}f(ze^{i\theta})$ is starlike, we can assume that a_2 is real. A simple calculation shows that

$$K(\alpha, r) = r + (2/(1+\alpha))r^2 + O(r^3).$$

Since $f(r)=r+a_2r^2+O(r^3)$, from Theorem 1 we deduce that

$$r + a_2 r^2 + O(r^3) \le r + (2/(1 + \alpha))r^2 + O(r^3)$$

and thus $a_2 \leq 2/(1+\alpha)$.

The sharpness of the result is indicated by the function $f_0(\alpha, z)$, since $f_0(\alpha, r) = K(\alpha, r)$.

THEOREM 3. If f(z) is α -starlike, $\alpha > 0$, then the image of the unit disc under the mapping w = f(z) always contains the disc $|w| < d(\alpha)$, where

$$d(\alpha) = \frac{1}{4} \qquad \text{when } \alpha = 0,$$

$$= \left[\frac{1}{2\alpha} \frac{\Gamma(1/\alpha)^2}{\Gamma(2/\alpha)} \right]^{\alpha} \quad \text{when } \alpha > 0.$$

This result is best possible in the sense that $d(\alpha)$ cannot be made any larger.

PROOF. The case $\alpha=0$ is well known and is best possible. Let $\alpha>0$, and let W_0 be a point on the boundary of f(D) that is nearest to the origin. Let L_1 denote the straight line from 0 to W_0 , and L its preimage in \overline{D} . Then we have $|W_0|>|f(z)|$ for $z\in L\cap D$. Since the circle |z|=r, for each $0\le r<1$, intersects L at least once, we have by Theorem 1 that $|W_0|>-K(\alpha,-r)$ for all $0\le r<1$, i.e.

$$|W_0| > r \left[G\left(\frac{1}{\alpha}, \frac{2}{\alpha}, \frac{1}{\alpha} + 1; -r \right) \right]^{\alpha} = \left[\frac{1}{\alpha} \int_0^r \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} d\rho \right]^{\alpha}$$

for $0 \le r < 1$. The last expression is an increasing function of r, and so we obtain

(6)
$$|W_0| \ge \left[\frac{1}{\alpha} \int_0^1 \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} d\rho\right]^{\alpha} \equiv \left[\frac{1}{\alpha} H(\alpha)\right]^{\alpha}.$$

By making the substitution $\rho = 1/u$ in $H(\alpha)$, we obtain

$$H(\alpha) = \int_0^1 \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} d\rho = \int_1^\infty u^{1/\alpha - 1} (1 + u)^{-2/\alpha} du,$$

and deduce from [6, p. 254] that

$$H(\alpha) = \frac{1}{2} \int_0^\infty u^{1/\alpha - 1} (1 + u)^{-2/\alpha} du = \frac{\frac{1}{2} \Gamma(1/\alpha)^2}{\Gamma(2/\alpha)}.$$

Hence from (6) we obtain

$$|W_0| \ge \left[\frac{1}{2\alpha} \frac{\Gamma(1/\alpha)^2}{\Gamma(2/\alpha)}\right]^{\alpha} = d(\alpha),$$

and this proves the corollary.

That $d(\alpha)$ cannot be made any larger can be seen by considering the function $f_{\alpha}(\alpha, z)$ with $\theta = \pi$.

REMARKS. (i) If we use Stirling's theorem [6, p. 253],

$$\Gamma(x) = x^{x-1/2}e^{-x}, /(2\pi)[1 + o(1)] \text{ (as } x \to \infty),$$

then a simple calculation yields $\lim_{\alpha\to 0^+} d(\alpha) = \frac{1}{4}$, so we have a "continuous" extension of the $\frac{1}{4}$ -theorem for all α -starlike functions, $\alpha \ge 0$. In particular, note that $d(1) = \frac{1}{2}$ as expected, and that $d(2) = \pi^2/16 = .617$. Since $\Gamma(z)$ has a simple pole at z=0 with residue 1, we find that $\lim_{\alpha\to\infty} d(\alpha)=1$.

(ii) This last result can be used to show that the only function which is Mocanu type infinity is the identity function f(z)=z. If we consider $g(z) \in \mathcal{M}(\infty)$ then the image domain of g(z) will contain all open discs with center at the origin of radius $d(\alpha)$, $\alpha \ge 0$. Since $\lim_{\alpha \to \infty} d(\alpha) = 1$, the

image domain of g(z) will contain the unit disc. This implies that f(z) is subordinate to g(z) and hence g(z) = f(z) = z.

(iii) By using Theorem B and the analyticity of $d(\alpha)$ we can show $d(\alpha)$ is a strictly increasing function of α . The function $f_{\theta}(\alpha, z)$ $[f_{\theta}(\alpha, z) \in \mathcal{M}_{\alpha}]$ was used to indicate the sharpness of Theorem 3. Since $d(\alpha)$ is strictly increasing, we see that $f_{\theta}(\alpha, z) \notin \mathcal{M}_{\beta}$ for $\beta > \alpha$, and hence $f_{\theta}(\alpha, z) \in \mathcal{M}(\alpha)$. This is a proof of the fact that $\mathcal{M}(\alpha)$ is not empty for $\alpha \ge 0$.

THEOREM 4. If f(z) is α -starlike, $\alpha > 0$, and $M(r) = \max_{\theta} |f(re^{i\theta})|$, then

$$M(r) = O(1/(1-r))^{2-\alpha}$$
 for $0 \le \alpha < 2$,
= $O(\log(1/(1-r)))^2$ for $\alpha = 2$,

as $r \rightarrow 1^-$. If $\alpha > 2$, then

$$M(r) \leq \left\lceil \frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(1-2/\alpha)}{\Gamma(1-1/\alpha)} \right\rceil^{\alpha}.$$

PROOF. From (4) we have $M(r) \le r/(1-r)^2$, which proves the theorem in the case $\alpha = 0$. If $\alpha > 0$, then from Theorem 1 we have the sharp result

(7)
$$M(r) \leq K(\alpha, r) = r[G(1/\alpha, 2/\alpha, 1/\alpha + 1; r)]^{\alpha}.$$

If we now make the restriction $0 < \alpha < 2$, then

$$\lim_{r \to 1^{-}} \frac{G(1/\alpha, 2/\alpha, 1/\alpha + 1; r)}{(1 - r)^{1 - 2/\alpha}} = \frac{1}{2 - \alpha}$$

[6, p. 299], and if we combine this with (7) we obtain

$$M(r) = O(r/(1-r)^{2-\alpha}) = O(1/(1-r))^{2-\alpha}$$

as $r \rightarrow 1^-$.

If $\alpha=2$, we have from [6, p. 299] that

$$\lim_{r \to 1^{-}} \frac{G(\frac{1}{2}, 1, \frac{3}{2}; r)}{\log(1/(1 - r))} = \frac{1}{2},$$

and combining this with (7) we obtain

$$M(r) = O(r[\log(1/(1-r))]^2) = O(\log(1/(1-r)))^2$$

as $r \rightarrow 1^-$.

In the case $\alpha > 2$, on account of (5) we have

$$M(r) \leq \left[\frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(1-2/\alpha)}{\Gamma(1-1/\alpha)}\right]^{\alpha},$$

which completes the proof of the theorem.

REMARKS. If $\alpha=0$, then the theorem is best possible since the function $f(z)=z/(1-z)^2$ satisfies $M(r) \le r/(1-r)^2$. If $0 < \alpha < 2$, then the theorem is best possible since

$$|f_0(\alpha, r)| \sim (1/(2-\alpha))^{\alpha} (r/(1-r)^{2-\alpha})$$

as $r \rightarrow 1^-$. Also, if $\alpha = 2$, then the theorem is best possible since

$$|f_0(2,r)| \sim \frac{1}{4}r[\log(1/(1-r))]^2$$
.

Note that, when $\alpha=1$, Theorems 1, 2 and 3 reduce to the corresponding results for convex functions.

A check of the distortion theorems for $\alpha=0$ and $\alpha=1$ indicates that if $-h(-r) \le |f(z)| \le h(r)$, then $h'(-r) \le |f'(z)| \le h'(r)$. In light of this we make the following conjecture.

Conjecture. If f(z) is α -starlike, $\alpha > 0$, then

$$(\partial/\partial r)K(\alpha, -r) \le |f'(z)| \le (\partial/\partial r)K(\alpha, r).$$

We prove this conjecture only in the following special case.

THEOREM 5. If f(z) is α -starlike, where $\alpha \ge 1$, then for |z| = r (0 < r < 1) we have

$$\frac{\left[\frac{1}{\alpha} \int_{0}^{r} \rho^{1/\alpha - 1} (1 + \rho)^{-2/\alpha} d\rho\right]^{\alpha - 1}}{r^{1/\alpha} (1 + r)^{1/\alpha}} = \frac{\partial}{\partial r} K(\alpha, -r) \leq |f'(z)| \leq \frac{\partial}{\partial r} K(\alpha, r)$$

$$= \frac{\left[\frac{1}{\alpha} \int_{0}^{r} \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho\right]^{\alpha - 1}}{r^{1/\alpha} (1 - r)^{2/\alpha}},$$

and these inequalities are sharp.

PROOF. From the integral representation we have

$$|f'(z)| = \frac{|F(z)|^{1/\alpha} |f(z)|^{1-1/\alpha}}{|z|},$$

where F(z) is starlike. By (4) and Theorem 1 we obtain, for |z| = r (0 < r < 1),

$$|f'(z)| \leq \frac{1}{r} \left[\frac{r}{(1-r)^2} \right]^{1/\alpha} [K(\alpha,r)]^{1-1/\alpha}$$

$$= \frac{1}{r^{1-1/\alpha} (1-r)^{2/\alpha}} \left[\frac{1}{\alpha} \int_0^r \rho^{1/\alpha - 1} (1-\rho)^{-2/\alpha} d\rho \right]^{\alpha - 1} = \frac{\partial K(\alpha,r)}{\partial r}.$$

The left-hand inequality is proved by using the corresponding inequalities in (4) and Theorem 1.

318 S. S. MILLER

The functions $f_0(\alpha, z)$ and $f_{\pi}(\alpha, z)$ at z=r indicate the sharpness of the result.

REMARKS. (i) When $\alpha=1$ we obtain the known result $1/(1+r)^2 \le |f'(z)| \le 1/(1-r)^2$ for |z|=r (0 < r < 1).

(ii) When $\alpha=2$ we obtain

$$\frac{\tan^{-1} r^{1/2}}{r^{1/2}(1+r)} \le |f'(z)| \le \frac{\log((1+r^{1/2})/(1-r^{1/2}))}{2r^{1/2}(1-r)}$$

for |z| = r (0 < r < 1).

(iii) When $\alpha > 2$, by using [6, p. 253], we obtain

$$|f'(z)| \le \frac{1}{r^{1-1/\alpha}(1-r)^{2/\alpha}} \left[\frac{1}{\alpha} \int_0^1 \rho^{1/\alpha - 1} (1-\rho)^{-2/\alpha} d\rho \right]^{\alpha - 1}$$
$$= r^{1/\alpha - 1} (1-r)^{-2/\alpha} \left[\frac{1}{\alpha} \frac{\Gamma(1/\alpha)\Gamma(1-2/\alpha)}{\Gamma(1-1/\alpha)} \right]^{\alpha - 1}$$

for $|z| = r \ (0 < r < 1)$.

BIBLIOGRAPHY

- 1. S. S. Miller, P. Mocanu and M. O. Reade, All alpha-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- 2. P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133. MR 42 #7881.
- 3. V. Paatero, Über die Konforme Abbildungen von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. A 33 (1931), no. 9.
- 4. C. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25#1279.
- 5. W. Seidel, Über die Ränderzuordnung bei Konforme Abbildungen, Math. Ann. 104 (1931), 182-213.
- 6. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1927.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420