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DISTORTION  PROPERTIES  OF ALPHA-

STARLIKE FUNCTIONS

sanford s. miller1

Abstract. Let a be real and suppose that f(z)=z+^2j¿ a„z"

is regular in the unit disc D with f(z)f'(z)j¿0 in 0<|z|<l. If

Re[(l-a)z/'(z)//(z) + a((z/''(z)//'(z)) + l)]>0 for zeD, then /(z)

is said to be an alpha-starlike function. These functions are uni-

valent and they very naturally unify the classes of starlike (a=0)

and convex (a = l) functions. The author obtains the 1-theorem,

sharp bounds on |/(z)| and |/'(z)|, and growth conditions on M(r).

1. Introduction. In this paper, we continue the study, initiated in [1]

and [2], of the class of alpha-starlike functions. Our main purpose is to

obtain several distortion theorems for functions in these classes. We will

need the following definitions and theorems in this paper.

Definition 1. Let a be real and suppose that /(z)=z+2£L2 anz" is

regular in the unit disc D with f(z) • f'(z)j£Ç) in 0<|z| < 1. If

Re[(l - a)z/'(z)//(z) + a((z/"(z)//'(z)) + 1)] > 0

for z e D, then f(z) is said to be an oi-starlike function. We let the class of

these functions be denoted by Jia.

Theorem A.   If' f(z) e Jia then f(z) is starlike (and univalent).

Theorem B.    Iff(z) e Jiafor a^O then f(z) e Jiß,for 0<i/?^a.

Definition 2. If f(z) is starlike and <x.=lub{ß\f(z) e Jiß} then f(z) is
said to be of Mocanu type a and we write fe Ji(<£). Note that a may be

infinite.

Theorem C (Integral Representation). The function f(z) is in Jix,

a>0, if and only if there exists a starlike function F(z) such that

/(z) =
a Jo

where the powers appearing in the formula are meant as principal values.
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Definition 1 and Theorems B and C may be found in [2] while Theorem

A is in [1].

If in Theorem C we take g(z) to be the Koebe function z/(l —eiez)2, then

we obtain the alpha-starlike function

/„(a, z) = - ÍV/a_1(l - Ce")-"' dl
.a Jo

where Ö is real. These functions will serve as the extremal functions for the

distortion theorems of §2.

In what follows, frequent use will be made of the hypergeometric

functions

T(c)    ^T(a + k)T(b + k) zk
G(a, b, c; z) =- >-

T(a)T(b)£0        F(c + Ac) k\

^' T(c) f1
- tV^t—;  u^1 - «r**o - ™rbdu,

1 (a)l (c — a) Jo

where Rea>0 and Re(c—a)>0. These functions are regular for zeD

[6, pp. 281-283]. In addition we define the functions

K(x, r) = r[G(\¡x, 2\x, 1/a + 1; r)]a

(2) 1 i>^d -
.a Jo

pT^dp

where a>0.

2. Distortion properties of.

Theorem 1.    If'f(z) is x-starlike, a>0, thenfor \z\—r (0<r<l) we have

(3) -K(x, -r) ^ |/(2)| ^ K(x, r).

Equality holds in both cases for the x-starlike function fe(x, z).

Proof.    We may take z—r, for the general case can be reduced to this

by considering the function f(r\z)\iq with suitably chosen r¡ such that

By the integral representation for functions in Jix there exists a starlike

function £(z) such that

/(z)=ei«4
and if we take z = r and integrate along the positive real axis (Ç, = pe'e) we

obtain

/(r)=(if'!£Wfi-4
\x Jo        p /
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Since F(z) is starlike we have

(4) pIU + Pf ^ \F(p)\ = pl(\ - p)\

and hence

i/wr =i fV'-'a-/>)-"• ¿p.
a Jo

Making the change of variables p=ru, we obtain

\f(r)\v« = — fw1/ot-](l - ru)-2/x du,
a Jo

and on comparing this with (1), with a=l/a, è=2/a and c=l/a+l we

obtain

|/(r)|1/a^r1/aG(l/a,2/a,l/a+l;r).

Raising both sides to the a power and employing (2), we get \f(r)\ ^K(x, r),

which proves the right-hand inequality in (3).

To prove the left-hand inequality of (3), we consider the straight line T

joining 0 to f(z)=Re"1'. Since/(z) is starlike, Y is the image of a Jordan arc

y in D connecting 0 and z=re'e. The image of y under the mapping

[/(z)]1/c" will consist in general of many line segments emanating from the

origin, each of length RlU=\f(z)\lla=$y \df(Ç)ll"ldi\ \dt\. Since f(z) is <x-

starlike, from the integral representation we know there exists a starlike

function F(z) such that df(Cruldt> = (l¡oL)F(Í)l''xll Thus if p=\t\, we

deduce from (4) that

a Jy        £, a Jy

a Jo

2/a
\di\

(1 + P)-2/°dp,

and by substituting p=ru and using (1) and (2), we obtain |/(z)|_

-#(«, -r).

That the right-hand inequality in (3) is sharp can be seen by considering

the function fe(a, z) with 0=0 and z=r. For the left-hand inequality,

consider/e(a, z) with 6=tt and z=r.

Remarks, (i) If a=l then (3) reduces to r/(l+r)^|/(r)|^r/(l—r),

the well-known result for convex functions.

(ii) If a=2 then (3) reduces to

[tan-1 V>]2 ̂ l/(z)| ^ [Mog((l + V)/(l - V'"))]2-
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(iii) If a>2, then by (3) and [6, p. 253] we have

1/(2)1
a Jo

l/a-l
(1

i ro/a)r(i
x Jo

2/a)

l/a-l (l-pY*i*dp

so

(5)

T(l - l/a)

iro/a)ro-2/a)-
r(l - l/a)

i.e. if /(z) e ^#a with <x>2 then /(z) is bounded. The bound (5) is sharp as

can be seen by considering fg(x, z) with 0=0 and z=r when r—*-t~.

If f(z) is oc-starlike, with a>2, then by Theorem B and (5), f(z) will be a

bounded convex function. Hence, by [3, p. 67], [4] and [5] we immediately

obtain the following two corollaries.

Corollary 1.1. 7//(z) is x-starlike with oc>2, then f(z) extends to a

continuous function on D, the boundary of/(£) is a rectifiable Jordan curve,

andf'(z) e ££.

Corollary 1.2. If' f(z) is x-starlike with x>2, and if f(z) = z+a2z2+

• • ■ , then an = 0(n~1~ô) as n->oo, where ô = ô(f)>0.

We can use Theorem 1 to obtain the bound for |a2| and the analogue of

the ¿-theorem as we do in the following two theorems.

Theorem 2. If f(z) is x-starlike, a>0, and f(z)=z+a2z2+- ■ ■ , then

\a2\ ̂ 2/(1 +a), and this inequality is sharp.

Proof. We only need to prove the inequality for a>0. Since, for real

6, e~l6f(ze'e) is starlike, we can assume that a2 is real. A simple calculation

shows that

K(x, r) = r+ (2¡(\+x))r2 + 0(r3).

Since f(r)=r+a2r2+0(r3), from Theorem 1 we deduce that

r + a2r2 + 0(r3) = r + (2/(1 + x))r2 + 0(r3),

and thus a2_2/(l+a).

The sharpness of the result is indicated by the function f0(x, z), since

/o(«, r)=K(x, r).

Theorem 3. Iff(z) is x-starlike, x>0, then the image of the unit disc

under the mapping w=f(z) always contains the disc \w\<d(x), where

d(°0 = i when x = 0,

i ro/a)2-

L2a r(2/a).
when x > 0.
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This result is best possible in the sense that d(a.) cannot be made any larger.

Proof. The case <x=0 is well known and is best possible. Let <x>0,

and let W0 be a point on the boundary of f(D) that is nearest to the origin.

Let Fj denote the straight line from 0 to W0, and L its preimage in D. Then

we have |IF0|>|/(z)| for z e LnD. Since the circle |z|=r, for each

0_r<l, intersects L at least once, we have by Theorem 1 that |lFo|>

-K(ol, -r) for all 0=r<l, i.e.

m > r\Gß,l,l-+ 1; -r)T = |~± f>-l(l + pT** dp]'
L    \a   a   a /J La Jo

for 0=r<l. The last expression is an increasing function of r, and so we

obtain

(6) I»i| §: \- f V'-^l + pT2l° dp]" m \-Ä(oc)T.
.a Jo J        La

By making the substitution p=l¡uin H (a), we obtain

fas
=      u1/!l-\l +u)-2l"du,HiaL) = (lp1'-1il + Prt/'dp

Jo

and deduce from [6, p. 254] that

//(a) = ¿       u1'-1
2 Jo

(1 + ur,du = imM
1X2/«)

Hence from (6) we obtain

1  TQ/q)2

,2a r(2/a).
= d(a),

and this proves the corollary.

That d(a) cannot be made any larger can be seen by considering the

function/fl(a, z) with d=ir.

Remarks,    (i) If we use Stirling's theorem [6, p. 253],

r(*) = x*-1/2e-%/(277)[l + o(l)]    (as x -*. oo),

then a simple calculation yields lima_0+ d(a.) = \, so we have a "continuous"

extension of the ¿-theorem for all a-starlike functions, a_0. In particular,

note that d(l) = \ as expected, and thatö?(2)=7r2/16=.617. Since T(z)has a

simple pole at z=0 with residue 1, we find that lim^^ rf(a) = l.

(ii) This last result can be used to show that the only function which is

Mocanu type infinity is the identity function f(z)=z. If we consider

g(z) e Ji(co) then the image domain of g(z) will contain all open discs

with center at the origin of radius d(a.), a_0. Since lim^^ c/(a)=l, the
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image domain of g(z) will contain the unit disc. This implies that f(z) is

subordinate to g(z) and hence g(z)=f(z)=z.

(iii) By using Theorem B and the analyticity of d(x) we can show d(x) is

a strictly increasing function of a. The function fe(x, z) [fe(x, z) e Jix]

was used to indicate the sharpness of Theorem 3. Since d(x) is strictly

increasing, we see that/e(a, z) ^ Ji^ for ß>x, and hence fe(x, z) e Ji(x).

This is a proof of the fact that Ji(x) is not empty for oc_0.

Theorem 4.   If f(z) is x-starlike, x>0, and M(r)=maxe \f(reie)\, then

M(r) = 0(1/(1 - r))2"*       for 0 = x < 2,

= 0(log(l/(l - r)))2   forx = 2,

as r—»4""". Ifx >2, then

T r(l/a)r(l - 2/a)-
M(r) =

T(l - l/a)     J

Proof.    From (4) we have M(r)_r/(1— r)2, which proves the theorem

in the case a=0. If a>0, then from Theorem 1 we have the sharp result

(7) M(r) = K(x, r) = r[G(\¡x, 2/a, l/a + 1 ; r)f.

If we now make the restriction 0<a<2, then

,.    G(l/a,2/a, l/a + 1 ; r) 1
'im-ET,-=-
r-i" (1 - r)1-2'* 2 - a

[6, p. 299], and if we combine this with (7) we obtain

M(r) = 0(r/(l - r)2-*) = 0(1/(1 - r))2~a

as r—y\~.

If a=2, we have from [6, p. 299] that

lim
G(l, 1,1; r)

r-i- log(l/(l - r))     2

and combining this with (7) we obtain

M(r) = 0(r[log(l/(l - r))f) = 0(log(l/(l

as r-+l~.

In the case a>2, on account of (5) we have

r))f

M(r) =
1 T(l/a)r(l - 2/a)'

La T(l - l/a)

which completes the proof of the theorem.
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Remarks. If a=0, then the theorem is best possible since the function

/(z)=z/(l-z)2 satisfies M(r)=r/(l-r)2. If 0<a<2, then the theorem is

best possible since

!/*(«, r)|~ (1/(2 - «))«(r/(l - if"")

as r-*l~. Also, if a=2, then the theorem is best possible since

|/0(2, r)\ ~ Mlog(l/(l - r))}2.

Note that, when a= 1, Theorems 1, 2 and 3 reduce to the corresponding

results for convex functions.

A check of the distortion theorems for a=0 and a=l indicates that if

-h(~r)ú\f(z)\^h(r), then h'(-r)^\f'(z)\^h'(r). In light of this we
make the following conjecture.

Conjecture.   If f(z) is a-starlike, a>0, then

(d¡dr)K(x, -r) = |/'(z)| = (djdr)K(x, r).

We prove this conjecture only in the following special case.

Theorem 5. Iff(z) is x-starlike, where a_l, then for \z\=r (0</-<l)

we have

[ii?'-
(l + pT2" dp

r1/a(l + if"
= ^K(x,-r)^\f'(z)\^^K(x,r)

or or

[>-(l -
Jo

1 fr

a
?rladp

2/arVa(\ - r)

and these inequalities are sharp.

Proof.    From the integral representation we have

ir(z)i = toi1" \f(z)\i-Va

\z\

where £(z) is starlike. By (4) and Theorem 1 we obtain, for |z| =r (0O< 1),

l/'0)| = -
r ■0 - r)2

1

XU

[K(x, r)] l-l/a

rl-l/«(l  _ rf
jy>-\i - Pr2<° dp

dK(x, r)

dr

The left-hand inequality is proved by using the corresponding inequalities

in (4) and Theorem 1.
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The functions/0(a, z) and/,(a, z) at z=r indicate the sharpness of the

result.

Remarks, (i) When a=l we obtain the known result 1/(1 +r)2^

\f'(z)\ = 1/(1 -r)2 for \z\=r (0<r<l).

(ii) When a=2 we obtain

tan"1 r1/2

r1/2(l + r)
= 1/ 0)1

log(0 + r1/2)/(l - rli2))

2rm(\ - r)

for|z|=r(0<r<l).

(iii) When a>2, by using [6, p. 253], we obtain

'0)1 < -—-í—-p fV^-xi - ¿r2/a¿p1/
-"*(1 - r)

= r^l - r)-2'*

for |z|=/- (0<r<l).

i rq/aorq - 2/a)-]«-1

.a      T(l - 1/a)     .
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