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ON  BAZILEVIC FUNCTIONS

RAM SINGH

Abstract. In this paper we study two subclasses of the class

B—the so-called class of Bazilevic functions. It is known that B is

a subclass of S, the class of univalent functions in E={z\ \z\<\).

Some well-known results pertaining to various subclasses of S will

follow as corollaries to the theorems which are obtained here.

1. Introduction.    Let S be the class of functions

(1.1) f(z) = z + a2z2 + ■■■ + anzn + • ■ •,

which are regular and univalent in E={z\ \z\ < 1}, and let K, Sx, S* and C

be the usual subclasses of S consisting of functions which are, respectively,

close-to-convex, ¿-spiral-like, starlike (w.r.t. the origin) and convex in E.

Let us denote by 3? the class of functions P(z) which are regular in E and

satisfy the conditions: P(0)=1 and ReF(z)>0 in E. Let us denote by

B(<x, ß, g, P) the class of functions/(z) which are regular in E, have the

form (1.1), and which, for some P(z) e 3P, g(z) e 5* and real numbers <x

and ß with <x>0, may be represented as

PitMty?"-1 dt
0

(Powers in (1.2) are understood as principal values.) Bazilevic [1] proved

that B(a., ß, g, P), which for the sake of brevity we shall simply denote by

B, is a subclass of S. In fact, it is known [10] that C<=S* <=S¿<=K<=B<=S.

Till today, B is the largest known subclass of S.

Practically nothing is known about B in general. Of late, some results

have been obtained about certain subclasses of B. (See [5], [10], [13], [14].

The author was informed by the referee that certain subclasses of B are

presently being investigated, among others, by Keogh, Merkes, Miller,

Mocanu, Reade, Robertson, Wright and Ztotkiewicz.)

Let a be a given nonnegative real number and let f(z) be regular in E

and have the form (1.1). We say that

(a) f(z) e B(ol) if Re{zf'(z)f(zy-Ilg(z)"}>0, for some g(z) eS*,zeE,

(b) f(z) e *,(«) if Re{z/'(z)/(zr7z"}>0, z e E.

(1-2) f{z) =
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From (1.2) it is clear that for a>0, £(a) and £i(a) are subclasses of £

and that B(\)=K. Further, it is readily seen that £(0) = £1(0) = 5'* and

£1(l)=^a', where 0>' is the subclass of S consisting of functions f(z) for

which Re/'(z)>0 in £.

Iff(z) g B(ol) we say that f(z) is a Bazilevic function of type a (w.r.t.

the starlike function g, if g happens to be the function for which

Re{zf'(z)f(z)c'~1lg(z)'l}>0, zeE). We note that every f(z) e Bx(ol) is a

Bazilevic function of type <x with respect to the same starlike function

g(z)=z and that every starlike function is a Bazilevic function of type

a w.r.t. itself.

In this paper we give some theorems concerning the classes B(ct) and

£,(«).

2. Preliminary results.    We shall need the following results.

Lemma 1 [12]. If N(z) and D(z) are regular in E, N(0) = D(0), D(z)

maps E onto a many sheeted region which is starlike w.r.t. the origin and

Re{/v"(z)/£'(z)}>0 in E, then Re{7V(z)/£(z)}>0 in E.

A more general form of Lemma 1 is due to Merkes and Wright [9].

Lemma 2. Iff(z) £ S* and <x is any positive integer, then the function

F(z) defined by

(2.1) F(zr = ^±A[Zf(tfdt
z    ¿o

also belongs to S*.

Proof.    From (2.1) we have

<xzF'(z)

F(z) -f/(H/i:rdt=W)'say'

As £(z) is (a-fT)-valently starlike in £, following Libera [7] (using

Lemma 1) we see that £(z) g S*.

Lemma 2 is a generalization of a theorem of Libera [7, Theorem 1]

which corresponds to <x=l.

Remark 1. In fact, we can prove the following more general form of

Lemma 2.

Lemma 2'. If a and c are positive integers and f(z)eS*, then the

function F(z) defined by

(2.2) F(zf = ^ f Zf-lf(tfdt
zc   Jo

also belongs to S*.
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Putting a= 1 in Lemma 2', we obtain a theorem of Bernardi [2, Theorem

1].

Lemma 3. If F(z) e S*, a is a positive integer, and f(z) is defined by

(2.1), thenf(z) is starlike in |z|<r0(a) = {a+l-(2(a+l))1/z}/(a-l). This

result is sharp.

Proof.    We have

(2.3,     E^>=(z/<z).-r/(„. ,.)/£/<,)■*.

Since F(z) e S*, we have zF'(z)¡F(z)=P(z), for some P(z) e 3? and there-

fore from (2.3) we get

(2.4) zf(zf I [Zf(ty dt=l+ aP(z).

Logarithmic differentiation of (2.4) yields

(2.5) zf'(z)/f(z) = P(z) + zP'(z)l(l + aP(z)).

In (2.5) using the well-known inequalities

(2.6) \P'(z)\ ^ -^- Re P(z),        \z\ = r,
1 — r

(2.7) ReP(z)^(l - r)/(l + r),

we see that

Re ^^ > Re P(z) 1
2r/(l - r2)

>0
1 + a{(l - r)/(l + r)}J

provided r</-0(F) = {a-r-l-(2(a+l))1/2}/(a-l).

The function /(z), which corresponds to F(z)=z/(l+z)2 £ 5*, that is,

the function

a + 1 -(a - l)z"!1/a
(2.8) /(z) =-

(1 + z)2L (a + 1)(1 + z)

shows that the number r0(a) is the best possible one.

Lemma 3 is a generalization of a theorem of Livingston [8, Theorem 1]

which corresponds to a=l.

Remark 2. In fact, we can prove the following more general form of

Lemma 3.

Lemma 3'. If a and c are positive integers and F(z)eS*, then the

function f(z), defined by (2.2), is starlike in

\z\ < r0(a, c) = {-(a + 1) + (c2 + 2a + l)1/2}/(c - a).

This result is sharp.
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If in Lemma 3' we let a = l, we obtain a theorem of Bernardi [3,

Theorem 1].

Lemma 4.   Iff(z) g £x(a), where a is a positive integer, then

Re(f(z)lzf > 0,       z g E.

Proof.   Since/(z) g £x(a), we have

zf'(z) d(f(zY)ldz
Re-■-= Re-> 0,       z g E.

f(zf-*z* d(z*)/dz

An application of Lemma 1 proves the assertion of Lemma 4.

Lemma 5 [11].    If the functions (1 + Z?=1 Kz") and (1 + J£,i ^z*) belong

to 3P, then the same is true of the function (1 -\-\ 2£U ¿>vcvzv).

Lemma 6 [11].   Let h(z)=l+ßxZ+ß2z2+- • -, and H-G^z^H-t^z-i-

b'2z2+- • ■ be functions of the class 3P, and set

P.») *-¿ -UCK y0 = i-
2^=1 \pl

If An is defined by

(2.10) J (-D^Vv-rGKz) = S^4vzv,
v=l v=l

then

(2.11) l>U^2.

3. Theorems and proofs.

Theorem 1. The set of all points log{z1-"f'(z)lf(z)1~'l},for a fixed zeE

and f(z) ranging over the class £(a), is convex.

Proof. Since f(z) e B(a), we can write {zf'(z)lf(z)1-"g(z)x}=P(z) for

some g(z) g S* and £(z) G á3. Thus, we have

(3.1) logiz'-rWim1-*} = log £(z) + a log(g(z)/z).

It is readily verified that for a fixed z e E, the range of log £(z), as £(z)

ranges over ^, is a convex set. Similarly, for fixed z e E, the range of

log(g(z)/z), as g(z) ranges over S*, is a convex set. From these facts and

(3.1), Theorem 1 readily follows.

For a=0 and oc=l Theorem 1 yields

Corollary 1. The set of all points \og{zf'(z)/f(z)},for a fixed z g £ and

f(z) ranging over the class S*, is convex.
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Corollary 2.    The set of all points log{/'(z)}, for a fixed zeE and

f(z) ranging over the class K, is convex.

Results contained in the above corollaries were earlier proved by Y.

Komatu [6].

Theorem 2.    Ijf(z) e B(ol), where a is a positive integer, then the function

F(z) defined by (2.1) also belongs to .8(a).

(3.2)

Proof.    From the representation of F(z), we obtain

azF'(z)      (a + 1)[

F(z) i-tt 2/W -J>4
Since/(z) g B(a), there exists a function g(z) e S* such that

(3.3) Re[z/'(z)//(z)1-°g(zr'] > 0,       z e E.

If we define G(z) by

(3.4) G(zy - ±±1 [Zg(ty dt¡
z    Jo

then from Lemma 2 it follows that G(z) e S*.

From (3.2) and (3.4) we have

azF'(z)
z/W - \Zf{ty dt] / (Zg(ty at - S,    say.

Jo J / Jo D(z)F(zf-"G(zy

As in Lemma 2, one readily deduces, using (3.3), that

Re{azF'(z)/F(z)1-"G(z)"} > 0

in E, which means that F(z) g B(a). This completes the proof of Theorem 2.

For a=l, Theorem 2 yields a theorem of Libera [7, Theorem 3].

Remark 3. In fact, we can prove the following more general form of

Theorem 2.

Theorem 2'. If a. and c are positive integers and f(z) e B(ol), then the

function F(z), defined by (2.2), also belongs to B(a).

Theorem 2' is a generalization of a theorem of Bernardi [2, Theorem

3] which corresponds to a=l.

We would like to add here that Theorems 1 and 2 remain true if B(ol)

is replaced by ßx(a) both in the statements and conclusions of these

theorems.
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In the following theorem we consider the converse of Theorem 2,

namely, we assume that £(z) g B(a.), where a is a positive integer, and

find the radius of the disc in which/(z) defined by (2.1), is also in £(<x).

Theorem 3. If F(z) g B(x), where oc is a positive integer, then f(z),

defined by (2.1), is in B(x) provided |z|<r0(a), where r0(oc) is the same as in

Lemma 3. This result is sharp.

Proof. Theorem 3 is a generalization of Theorem 3 of Livingston [8],

which corresponds to a=l, and may be proved by using his method

(with obvious modifications).

Considering the function f(z) which is defined by (2.8) and corre-

sponding to £(z)=z/(l+z)2 g B(oc), and employing the usual techniques,

one readily sees that the number r0(a) is the best possible one. This completes

the proof of Theorem 3.

Remark 4. In fact, we can prove the following more general form of

Theorem 3.

Theorem 3'. If x and c are positive integers and F(z) g B(a), then the

function f(z), defined by (2.2), is in B(cc) provided |z|</-0(a, c), where

/■„(a, c) is the same as in Lemma 3'. This result is sharp.

Putting a=l in Theorem 3', we obtain a Theorem of Bernardi [3,

Theorem 3].

The following theorem may be similarly proved.

Theorem 4. If F(z) g £x(a), where a is a positive integer, then f(z),

defined by (2.1), is in £,(a) provided |z|<r1(a)={(a2+2«+2)1/2-l}/(a-|-l).

This result is sharp.

Putting a=l in the above theorem we obtain a theorem of Livingston

[8, Theorem 4].

Remark 5. In fact, we can prove the following more general form of

Theorem 4.

Theorem 4'. If a. and c are positive integers and F(z) g /^(cc), then the

function f(z) defined by (2.2) is in £i(<x) provided |z|<r2(oc, c)=

{((a+c)2+1)1/2-l}/(a+c). This result is sharp.

Putting a = l in Theorem 4'we obtain a theorem of Bernardi [3, Theorem

4].

Theorem 5. If f(z).g £i(a), where a is a positive integer, then the

function Fx(z) defined by Fx(zy+ß=zpf(z)a belongs to Bx(x+ß), for any

ß>0.
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Proof.    From the definition of F^z), we have

Fi(zy-W>  -P*   ^ +/(z)-'
and therefore,

(a + ß)zF[(z)  _ Jf(z)\ +  az/'(z)I- ß)zF[(z)  =    //Yz)Y

y-u+ß)za+ß   p\    J 1-ot,F¿Zy-W>¿>*l> \     Z      j f(Z)

The assertion of the theorem follows on using Lemma 4 and the fact that

f(z)sBx(aC).
In the following two theorems we establish some coefficient inqualities

for the class ¿?i(a).

Theorem 6.    Let f(z)=z+*Zn=2anzn G5x(a). Then we have the sharp

inequalities :

(i) \a2\ ^ 2/(a + 1);

2(3 + a)

(n) (2 + a)(a + l)2

^ 2/(2 + a), a £ 1;

2 4(1 - a)(5 + 3a + K2)
a4  <- +-;— ,        0 < a < 1,

(iii) 3 + a 3(2 + a)(a + l)3 ~~     _

^ 2/(3 + a), a ^ 1.

Proof.    Since/(z) g B^a.), we have

(3.5) ¿~T(z)im = m,

for someP(z) e 2P. Setting P(z) = l+c1z+c2z2+- ■ •+c„zn + - • • and com-

paring coefficients in (3.5) we obtain

(3.6) (a + \)a2 = clt

(3.7) (2 + a)a3 = c2 + (1 — a)c,a2 — (a/2)(l — a)a2,

(3 + a.)ai = c3 + (1 — a)c2a2 + {(1 — a)a3 — (a/2)(l — a)«2}^

(3-8) -a(l - a)a2a3 + ((1 - a)a(l + a)/6)a|.

Using the fact that |c„[is2, n=\, 2, • • ■ , in (3.6), we at once obtain in-

equality (i). Eliminating a2 from (3.6) and (3.7) we get

rtm c2      .    (1 - «)     2
(19) ß3 = 7T~ + on _l   tf Cl'2 + a      2(1 + a)

and the first inequality in (ii) follows.
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In (3.9) using the equality

(3.10) c2 = \c\ + e(2 - i \cx\2),        \s\ ^ 1,

which is a consequence of the well-known Carathéodory-Toeplitz in-

equality: \c2—\c2\-^(2— \Cx\2¡2), and employing elementary calculus we

obtain the second inequality in (ii).

It is readily verified that (i) and the first inequality in (ii) are sharp for

the function/(z), which is defined by

(3.11) z'-rWñz)1-* = (1 + z)/(l - z),

and that the second inequality in (ii) is sharp for the function/x(z) defined

by

(3.12)
z'-JXz)      1 + z2

fx(zy-*       1 - z2

We now come to the proof of (iii). Eliminating a2 and a3 from (3.8) with

the help of (3.6) and (3.7) we obtain

/-> ii\   /-i   i    \ , (1 — a)(3 + a)
(3.13)   (3 + a)a4 = c3 + -

(1+a)

CiCj    ,   (1 - 2a)

.2 + a      6(1 + a)2

For 0^a^£, (3.13) at once yields the first inequality in (iii).

When |-<<x^l, we eliminate c2 from the square bracket in (3.13) with

the help of (3.10), and using techniques of calculus, we find that the

absolute value of the expression in the square bracket attains its maximum

for c1=c2=2. Thus, from (3.13) we see that for i<x^ 1 also, the maximum

of |a4| is attained when |c1| = |c2| = |c3|=2 as was in the case of 0^<x^£.

This completes the proof of the first inquality in (iii).

To find the upper bound on |a4| for oc>l, we use a method due to

Nehari and Netanyahu [11].

Evaluating A3 from (2.10) we obtain

(3.14) A3 = b3 - 2Ylb[b2 + y2b'x3.

Since £(z)=l+c1z+c2z2+c3z3-f ■ ■ • eSP, an application of Lemma 5

and (2.11) to (3.14) gives

(3.15) \WzC3 - iyxb'xb2cxc2 + ly2b'x3c\\ ^ 2.

Comparing (3.15) and (3.13) we conclude that the absolute value of the

right-hand side of (3.13) will be less than or equal to 2, if we are able to

prove the existence of two members h(z) and g(z) of ^ such that if h(z) =

\+ßxZ+ß2z2+ß3z3+---  and g(z) = l+Gx(z)=l+b'xZ+b2z2+b'3z3+- ■ ■ ,
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then

V      o     i   u'W     (" - 1)(3 + «)b3 = 2,    iyxbxb2 = ,
(1 + a)(2 + a)

(3'16) ,    ,,3      (a - l)(2a - 1)(3 + a)
Mt'"-67TT^-'

where yx and y2 are given by (2.9), that is,

(3.17) Vl - Ki + m,  r% - Kl + ßi + §&)•

Choosing Z»i=Z»2=2, relations (3.16) give

(a - 1)(3 + a) (a - l)(2a - 1)(3 + a)
(3.18) y, =-,    y2 =-;-.

"      2(l+a)(2 + a)'    /2 6(1 + a)3

Substituting the value of yx from (3.18) in (3.17) we get

(3.19) ßx = -2(5 + «)/((l + «)(2 + a)).

The value of ßx, given by (3.19), is an admissible one, for it is readily seen

that \ßx\^2. Again, substituting the values of /?, and y2 from (3.19) and

(3.18) in the second equation in (3.17), we obtain

(3.20) ß2 - 2(a4 + 5a3 + 11a2 -19a + 36)/(3(2 + a)(l + a)3).

A straightforward calculation reveals that ß2^2. Now, we proceed to

construct h(z) and g(z). It is evident that we should have g(z)=

(1 + z)/(l —z), and one of the many choices for h(z) is the function

h(z) = M(l - z)/(l + z) + N(\ + Tz2)/(1 - Tz2),
where

M = 5 + a N = (q - l)(a + 3)

(1 + q)(2 + q) ' (   + l)(q + 2)'

q4 + 2q3 - 10a2 - 14q + 21
T =

3(q + l)2(q - l)(a + 3)

Since M, N and £are positive, M+N=l, £^1 (a^l), it is clear that

h(z) g 3P, and a little calculation shows that the coefficients of z and z2 in the

expansion of h(z) are respectively equal to ßx and ß2, where ßx and ß2 are

given by (3.19) and (3.20), respectively. We have therefore shown that for

a>l, (3 + a)|a4|^2, which is the second inequality in (iii). The function

f2(z) defined by

z^J^z)      1 + z3
—-~-= —^—z g Bx(x)
f2(zf~«       1 - z3



270 RAM  SINGH [April

proves the statement regarding sharpness. This completes the proof of

Theorem 6.

For a=0 and a=l, Theorem 6 gives us the well-known inequalities for

the classes S* and 3P', respectively.

The following theorem, which we state without proof, generalizes a

theorem of Keogh and Merkes [4, Theorem 1].

Theorem 7.    Lei/(z)=z+]>™=2 anzn g ^(a). Then

(i) for any real number fi, we have

2 2       ,  2(1 - a - 2/1) 1-a
r™2l ^ —— +      n   ,    ,2-.    /•* ̂  —~

2 + a (1 + a) 2

-     2 1 - a ^     ^. 4 + 3 a + a2~~ = p> -

2 + a 2 2(2 + a)

2         4u(2 + a) - 2(4 + 3a + a2) .   4 + 3a + a2
~ +-,„.,-.    f* =

- 2 + a (2 + a)(l + a)2 ~    2(2 + a)

(ii) for any complex number p, we have

3 - A*«SI ^ r^—.    13 + « - 2^(2 + a)| ¿ (1 + a)2,
2 + a

^     2 2 |3 + a - 2^(2 + q)[ - 2(1 + a)8

2 + a   ' (2 + a)(l + a)2

|3 + a - 2fi(2 + a)| ^(1 + a)2.

These inequalities are sharp.
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