ON THE HOMOTOPY TYPE OF IRREGULAR SETS

P. F. DUVALL, JR. AND L. S. HUSCH1

ABSTRACT. If M is an open connected manifold and h is a homeomorphism of M onto itself such that h is positively regular on M and the set of irregular points, Irr(h), is a nonseparating compactum, then it is shown that Irr(h) is a strong deformation retract of M.

1. **Introduction.** If (X, d) is a metric space and h is a homeomorphism (continuous map) of X into itself, h is regular (positively regular) at $p \in X$ if, for each $\varepsilon > 0$, there exists $\delta > 0$ such that $d(p,q) < \delta$ implies that $d(h^n(p), h^n(q)) < \varepsilon$ for all integers n (positive integers n). Let Irr(h) denote the set of points at which h fails to be regular. If X is an open connected manifold, h is a homeomorphism of X onto itself which is positively regular at each point of X, and if Irr(h) is a compact zero dimensional nonempty subset of X, it follows from [6] that Irr(h) contains a single point and X is homeomorphic to Euclidean n-space.

If P is a compact polyhedron in Euclidean space and X is an open regular neighborhood of P, the homeomorphism which pushes along the mapping cylinder structure toward P is positively regular on X and Irr(h)=P. In [1] and [2], we investigated the problem of the converse of this construction. However in [1] and [2], we limited our considerations to the case when h|Irr(h) is periodic and were able to show that Irr(h) is a strong deformation retract of X. In this note, we remove the condition that h|Irr(h) is periodic.

2. A retraction theorem. Let M be a locally compact metric space and let $f: M \rightarrow M$ be a map which is positively regular at each point. For $x \in M$, let $O(x) = \operatorname{cl}\{f^i(x)\}_{i=1}^{\infty}$ and let $K(x) = \bigcap_{i=1}^{\infty} O(f^i(x))$. Given $y, z \in O(x)$, define $y \cdot z = \lim_{i \to +\infty} f^{m_i+n_i}(x)$ where $y = \lim_{i \to +\infty} f^{m_i}(x)$ and $z = \lim_{i \to +\infty} f^{n_i}(x)$. We summarize some facts from [3].

THEOREM 1. If O(x) is compact, then the product described above is well-defined and O(x) with this product is a commutative topological semigroup. K(x) is a topological subgroup of O(x). If $y \in K(x)$, then K(y) = O(y) = K(x).

With notation as above, let $C = \bigcup_{x \in M} K(x)$. For each $x \in M$, let e_x be the identity element in K(x) with respect to the product structure from

Received by the editors May 30, 1972.

AMS (MOS) subject classifications (1970). Primary 57E20, 54H20.

¹ Research supported in part by NSF grant GP-33872.

O(x). [Note that even though K(x) might be equal to K(y) for some $x \neq y$, their product structures might be different.] If $x \in C$, it follows from Theorem 1 that $x \in K(x)$ and since $x = \lim_{i \to +\infty} f^0(x)$, $x = e_x$. Define a function $r: M \to C$ by $r(x) = e_x$.

THEOREM 2. If, for each $x \in M$, O(x) is compact, then r is a retraction of M onto C.

PROOF. By the remarks above, r|C is the identity map. We proceed to show that r is continuous at $x \in M$. For $y \in M$, let

$$A(y) = \left\{ p \in K(y) \,\middle|\, p = \lim_{i \to +\infty} f^{n_i}(y) \text{ where } \lim_{i \to +\infty} f^{n_i}(x) = e_x \right\}.$$

Choose any increasing sequence $\{n_i\}_{i=1}^{\infty}$ such that $e_x = \lim_{i \to +\infty} f^{n_i}(x)$. Since O(y) is compact, $\{f^{n_i}(y)\}$ has a subsequence which converges to a point in K(y); hence A(y) is nonempty. We claim that A(y) is closed; suppose that $p = \lim_{i \to +\infty} p_i$, where $p_i \in A(y)$, $p_i = \lim_{j \to +\infty} f^{n(i,j)}(y)$ and $\lim_{j \to +\infty} f^{n(i,j)}(x) = e_x$. For each i, choose j_i such that $d(f^{n(i,j_i)}(x), e_x) < 1/i$ and $d(f^{n(i,j_i)}(y), p_i) < 1/i$. Therefore $\lim_{i \to +\infty} f^{n(i,j_i)}(x) = e_x$ and $\lim_{i \to +\infty} f^{n(i,j_i)}(y) = p$ so that $p \in A(y)$ and A(y) is closed.

Suppose $p=\lim_{i\to +\infty} f^{n_i}(y)$ and $q=\lim_{i\to +\infty} f^{m_i}(y)$ where $e_x=\lim_{i\to +\infty} f^{n_i}(x)=\lim_{i\to +\infty} f^{m_i}(x)$. Since $e_x=e_x\cdot e_x=\lim_{i\to +\infty} f^{n_i+m_i}(x)$, $p\cdot q\in A(y)$. Therefore A(y) is a subsemigroup of K(y). Since A(y) is compact, A(y) contains an idempotent [7, p. 22] which must be e_y .

Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that $d(x, y) < \delta$ implies

$$d(f^{i}(x), f^{i}(y)) < \varepsilon/3$$

for all i>0. Suppose $d(x, y)<\delta$. Since $e_y \in A(y)$, there exists a sequence $\{n_i\}_{i=1}^{\infty}$ such that $\lim_{i\to+\infty} f^{n_i}(x)=e_x$ and $\lim_{i\to+\infty} f^{n_i}(y)=e_y$. Then

$$d(r(x), r(y)) = d(e_x, e_y)$$

$$\leq d(e_x, f^{n_i}(x)) + d(f^{n_i}(x), f^{n_i}(y)) + d(f^{n_i}(y), e_y)$$

and by choosing i sufficiently large, we have that $d(r(x), r(y)) < \varepsilon$. Hence r is continuous at x.

- 3. Irregular sets. Now let M be an open connected manifold, $Y \subseteq M$ a compact set which does not separate M and let h be a homeomorphism of M onto itself such that h is positively regular at each point and Irr(h) = Y. Assume that the metric of M is induced from the metric of the one point compactification of M. From the techniques of Proposition 2.1 of [2], Y is connected.
- Lemma 3. If $A \subseteq M$ is a compact set and U is a neighborhood of Y, then there is an integer N such that $h^n(A) \subseteq U$ for all n > N.

PROOF. This was shown in Corollary 2.2 of [2] with the additional hypothesis that the extension, h_{∞} , of h to the one point compactification, $M_{\infty} = M \cup \{\infty\}$, of M is not regular at ∞ . However, if h_{∞} were regular at ∞ , then h_{∞} would be positively regular on the compactum M_{∞} . But then h_{∞} would be regular on all M_{∞} and $Irr(h) = \emptyset$ [5].

LEMMA 4. $Y=\bigcup_{x\in M} K(x)$.

PROOF. Let $Z = \bigcup_{x \in M} K(x)$. It follows from Lemma 3 that $Z \subseteq Y$ and Z is nonempty. We claim that Z is closed; suppose that $p = \lim_{i \to +\infty} p_i$ where $p_i \in K(x_i)$. Let W be a compact neighborhood of Y. By Lemma 3, we may assume that $x_i \in W$ for each i, and thus we may assume that there is a point $x \in W$ such that $x = \lim_{i \to +\infty} x_i$. Let $\varepsilon > 0$ be given and let $\delta > 0$ be such that if $d(y, x) < \delta$; then $d(h^n(y), h^n(x)) < \varepsilon/3$ for each n > 0. Choose N > 0 so that $d(x_N, x) < \delta$ and $d(p_N, p) < \varepsilon/3$. Now there exists n > 0 such that $d(h^n(x_N), p_N) < \varepsilon/3$; thus $d(h^n(x), p) \le d(h^n(x), h^n(x_N)) + d(h^n(x_N), p_N) + d(p_N, p) < \varepsilon$. It follows that $p \in K(x)$; thus Z is closed.

For each open set U containing Z and any compact set $A \subseteq M$, we claim that $h^n(A) \subseteq U$ for all but finitely many positive integers n. Clearly this is true if A is a point; the general statement follows from positive regularity and standard compactness arguments.

Suppose $q \in Y - Z$; let W be a compact connected neighborhood of Y and let U be an open neighborhood of Z such that $q \notin U$. For some n > 0, $h^n(W) \subseteq U$ and since Y is connected, h^n (frontier W) $\cap Y \neq \emptyset$. Since M - Y and Y are invariant under h, this is a contradiction. Thus Y = Z.

THEOREM 5. Y is a strong deformation retract of M.

PROOF. By Lemma 4 and Theorem 2, Y is a retract of M; therefore Y is an ANR. To prove the theorem it suffices to show that $j_*:\pi_n(Y)\to\pi_n(M)$ is an isomorphism for each n, where $j\colon Y\to M$ is the inclusion map [4, p. 218]. Since Y is a retract of M, j_* is one-to-one and since Y is an ANR, there is a neighborhood U of Y and a retraction $\rho\colon U\to Y$ such that the diagram

is homotopy commutative (rel Y) in M, where all maps other than ρ are inclusions. Let $y \in Y$, let $\alpha \in \pi_n(M, y)$ and let $f: (S^n, *) \rightarrow (M, y)$ be a map which represents α . For some m > 0, $h^m(f(S^n)) \subseteq U$; let β denote the class of

 $h^m f$ in $\pi_n(U, h^m(y))$. Then $j_*[(h|Y)_*^{-m}\rho_*(\beta)] = h_*^{-m} j_*\rho_*(\beta) = h_*^{-m} k_*(\beta) = h_*^{-m} h_*^m(\alpha) = \alpha$.

REMARK. Note that Theorem 5 is true in the case that M is a finite dimensional ANR.

COROLLARY 6. Let M be a connected open manifold and let h be a homeomorphism of M onto itself such that h is positively regular at each point. If Irr(h) is a continuum in M and if for some $x \in M$, $\lim_{i \to +\infty} \sup h^i(x) = Irr(h)$, then Irr(h) is the product of 1-spheres.

PROOF. It is easily seen that K(x) = Irr(h) and hence by Theorem 1, Irr(h) is a commutative topological group. By either Theorem 2 or 5, Irr(h) is locally connected and the result follows from [8, p. 262].

REMARK. In [2], we gave an example which can be slightly modified to an example for which M is the product of the 1-sphere and 3-dimensional Euclidean space, Irr(h) is a wildly embedded one sphere in M and for each $x \in M$, $\lim_{i \to +\infty} \sup h^i(x) = Irr(h)$. If $r: M \to Irr(h)$ is the retraction defined in §2, then for each $x \in Irr(h)$, $r^{-1}(x)$ is a generalized cohomology 3-manifold which is not a 3-manifold.

Conjecture. If M and h are as in Corollary 6 and if $r: M \rightarrow Irr(h)$ is the retraction defined in §2, then, for each $x \in Irr(h)$, $r^{-1}(x)$ is a generalized cohomology manifold.

A positive answer to the conjecture would provide valuable information about the topological conjugacy class of h.

REFERENCES

- 1. P. F. Duvall, Jr. and L. S. Husch, *Taming irregular sets of homeomorphisms*, Bull. Amer. Math. Soc. 78 (1972), 77–79.
- 2. ——, Homeomorphisms with polyhedral irregular sets, Trans. Amer. Math. Soc. (to appear).
 - 3. ——, Analysis on topological manifolds, Fund. Math. (to appear).
- 4. S. T. Hu, *Theory of retracts*, Wayne State Univ. Press, Detroit, Mich., 1965. MR 31 #6202.
 - 5. L. S. Husch, Equicontinuous commutative semigroups of onto functions (submitted).
- 6. S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6. MR 36 #5908.
- 7. A. B. Paalman-de Miranda, *Topological semigroups*, Mathematisch Centrum, Amsterdam, 1970.
- 8. L. S. Pontrjagin, *Topological groups*, GITTL, Moscow, 1954; English transl., Gordon and Breach, New York, 1966. MR 17, 171; MR 34 #1439.

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916