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BOUNDED,  CONSERVATIVE,  LINEAR  OPERATORS
AND  THE  MAXIMAL  GROUP.  II

E.  P.   KELLY,  JR.  AND D.  A.  HOGAN

Abstract. Let V denote an infinite dimensional Banach space

over the complex field, B[V] the bounded linear operators on V

and F a closed subspace of V. An element of 3~F={T\TeB[V\,

T(F)^F} is called a conservative operator. Some sufficient con-

ditions for Te3~F to be in the boundary, 38, of the maximal group,

Jl, of invertible elements are determined. For example, if Te3~r

is such that (i) V is the topological direct sum of 3i(T) and N(T)^

{6}, (ii) ris an automorphism on 3t(T)nF, then Te38. Also, the

complement of the closure of JÍ is discussed. This is an extension of

another paper by the same authors [6].

1. Introduction. In [6], a bounded, linear operator, T, on a Banach

space, V, which contains a complete subspace which is invariant under T

was called a conservative operator. In particular, the complete subspace

was taken to be the domain of a linear functional. Most of the results in

[6] do not depend on the complete subspace being the domain of a linear

functional. (For clarification, in the example (1) [6, p. 195], n is fixed and

B[c] should be B[V~\.) Hence, in this paper a conservative operator means a

bounded, linear operator on an infinite dimensional Banach space which

leaves a closed subspace, F, of V invariant. Let B[V] denote the Banach

algebra of bounded linear operators on V and ^F={T\T e B[V], T(F)^

F}. It is readily seen that ^F is a Banach subalgebra of B[V~\ and hence the

following facts are available :

(i) ^#={F|F~\ Te¿7~F), the maximal group of ¿FF, is open,

(ii) F g JÍ if and only if T'1 e B[V] and T(F)=F,

(iii) the boundary, 03, of JÍ is a multiplicative semigroup,

(iv) if Fj g JÍ and T2 e 03, then FjF2 and T2TX e 08.

Apparently necessary and sufficient conditions for F g &~v to be in 03

are not known. However, they are known in the case of a weakly closed,

selfadjoint operator algebra on a Hubert space [5]. It is known [8] that 03

is contained in the set of F g ^f which are both left and right topological

divisors of zero.
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Herein, 3iï(T) will denote the range space of £, N(T) will denote the null

space of £ and / will denote the identity operator. The results of [6] carry

over to the Banach algebra FF and this paper extends the work presented

in [6].

2. Sufficient conditions for £ e F~F to be in 38. In [7], Rhoades deter-

mined that certain classical triangular matrix summability operators are

in the boundary of the maximal group of conservative, triangular

operators. In [6] two questions raised in [7] were answered, by examples

of matrices whose products are compact operators on V=m, the space of

bounded complex sequences. Actually the following classes of operators

in ¡FF are subsets of 38:

(i) projections, other than /,

(ii) quasi-compact operators,

(iii) quasi-nilpotent operators.

The facts depend on V being infinite dimensional and follow from spectral

properties of these types of operators ([4], [8]). It should be noted that the

collection of compact operators, which form a closed two-sided ideal of

FF, is contained in 38.

Theorem 1.   If Te ^F is such that

(i) V is the topological direct sum of 3%(T) and N(T)^{6},

(ii) Tis an automorphism on 3%(T)C\F,

then Te 3$.

Proof. Let £ denote the projection of V onto 3$(T) along 7V(£). If

y+z=x e F, where y e 3ë(T), z e N(T), then P(x)=y. Now T(x)=T(y) e

£ and from (i) there is an x e 3$(T) such that T(x)=y. Then T(y) e Fn

3i(T) and (ii) implies xeFC\3#(T). Hence, y=T(x) eFr\0t(T). Thus,

P eFF. Moreover, M=£+/—£ eF~F. It can be verified that M is one-

to-one and onto V.

Now y+z=xeF where ye3iï(T)C\F, z e N(T). Then x=M(x+z),

where a e FC\3i(T) and T(x)=y. Thus M"1(£)=£. Hence, MeJt.

Since MP= (£+/-£)£= £, M e Ji, P e 3$, it follows that Te 38. The
following corollary is readily verified.

Corollary 1.   If T e ¿FF is such that

(i) V is the topological direct sum of 3i(T) and N(T)^{6},
(ii) £-!(£)=£,

then Te 3$.

It should be noted that Corollary 1 is essentially Lemma 2 of [6]. (For

clarification, in Lemma 2 [6], V=S(BT(V) indicates the direct sum of 5

and T(V) and (ii) hypothesizes the existence of a bounded projection of V
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onto S, insuring that the projection P in the proof, the projection of V

onto S along T(V), is bounded. Also, in the sentence preceding Lemma 2

[6], TeV should read Te B[V].) The hypotheses of Corollary 1 seem

rather strong since (i) may not be satisfied for finite dimensional V.

However, (i) is satisfied if F^/is a bounded projection on V. It is readily

seen that (ii) is not a necessary condition for F to be in 03, since it is not

satisfied by the null operator Z and Z e 03.

In the case where V=m and F=c, the space of convergent sequences,

(ii) of Corollary 1 says that F limits no bounded divergent sequences.

Now, Whitley ([9], [12]) showed that a matrix TeB[m] is such that

7T_1(c)=c if and only if it is range closed and has a finite dimensional null

space. Hence, if a matrix F e B[m] satisfies (i) of Corollary 1 and has a

finite dimensional null space, then (ii) of Corollary 1 is satisfied and Te 03.

There are examples [6] of matrices in B[m] which have closed range and a

finite dimensional null space which are not in 03 nor in JÍ. There are

matrices F in B[m] for which Te 03 and c is a proper subspace of T~*(c)

([2], [3], [7]). Thus it seems that in this setting a stronger condition than

(ii) of Corollary 1 is needed for a set of necessary and sufficient conditions

for F to be in 03.

Since Theorem 1 provides weaker conditions than Lemma 2 [6],

Theorems 2 and 3 of [6] are now stated, for completeness, in the setting of

this paper.

Theorem 2.    Let T^e 03 be one-to-one. For T2 e 3~F, if

(i) T2(V)^T,(V),
(ii) F, 1T2 satisfies (i) of Theorem 1,

(iii) T2(F)=T,(F),

(iv) T2\F)=F,

then T2 e 03.

Theorem 3.    Let Txe 03 be one-to-one. For T2 g £7~f, if

(i) T2(V)=T,(V),
(ii) F2 is one-to-one,

(iii) T2(F) = T,(F),
then T2 e 03.

It should be noted that Tr in the above theorems, being one-to-one and in

03, implies that Tx is a one-to-one, two-sided topological divisor of zero

and hence cannot be onto [10, Theorem 5].

In [3], certain conservative matrices in B[m] are expressed as I+P,

where the range space of P is finite dimensional. The following theorem

shows that these matrices are in JÍ, the closure of Ji.

Theorem 4.   // F, g 3~f is compact and T2eJi, then Tx+T2 e Ji.
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Proof. It is sufficient to prove that £i+£2 eJi, if £2 g Jt. Hence, if

£2 e Ji, then £¿~1 e ^. Also £2_1£1 is a compact operator. Thus 1+

T2xTx eJE and so £2 + £1=£2(/+£2"1£1) eJi.

There are several interesting geometrical facts about 38, such as 38 is

connected and 38 is not convex.

3. The complement of Ji. Let ¿V denote the complement of Ji. Note

that (i) of Theorem 1 implies that 3%(T) is closed. However, if 3f(T) is

closed, it does not follow that T e 38 [11]. Several sufficient conditions

for £ to be in JE are known, such as if TeFF satisfies either of the

following :

(i) £is one-to-one and 3&(T) is a closed proper subset of V,

(ii) £is onto but not one-to-one,

(iii) £"! eB[V] and £(£)^£.

Several facts pertaining to products of £ e JE and Tx e F~F are given in

[6]. Two other interesting results follow.

Theorem 5.   IfTe^V and TTX e Ji, then Tx e JE.

Proof. Note £j £ Ji, for if so, TTxeJi implies T'e Ji'. Since

TTx=T2 e Ji, T(T1T21) = I and TXT2X is in Ji, 38, Jr if and only if Ty is

in Ji, 38, JE. Thus £1£2~1 has a left inverse and must be one-to-one.

Moreover, (T21T)T1=I implies £j has a left inverse. Thus Tx is range

closed. Hence, £1£2~1 is range closed. Thus £1£2~1 e JE, implying £¡ e JE.

Theorem 6. If T e Jr and P is a projection such that N(P) is finite

dimensional, then TP and FT are in JE.

Proof. Now /—£ is compact. Hence, £(/—£) is compact. ££ is not

in Ji by Theorem 5. If ££ e 38, then by Theorem 4, ££+ £(/-£) = Te3§,

contradicting the hypothesis. Thus, TP eJE. Similarly, PTeJr. When

JE^- 0 , this theorem shows that there are both left and right divisiors of

zero in JE. It should be noted that for finite dimensional V, JE=0. It

remains unknown if JE—0 implies that V is finite dimensional [8].

4. An application of Theorem 6. Take £= V. Suppose £ has a closed

range and a finite dimensional, nonzero, null space, and V is the

topological direct sum of 3&(T) and another closed subspace of V.

Hence, there is a projection, £l5 and a TxeFF=B\V\ such that £=

TxPx, where £2 6 Ji or £j e JE. To review this factorization of £, note

that V-=3$(T)®K2, where K2 is a closed complementary subspace of 3$(T)

suchthat N(T) = [K2r\N(T)]@[3$(T)r\N(T)]. Thus V=[3t(T)C\N(T)]®

K~x®K2, where Kx is a closed complementary subspace of 3#(T)riN(T) in

3l(T). Now, define TX:V-+Vas follows: £, = £on KX®K3, where /^ is a

closed complementary subspace of K2C\N(T) in K2; TX=I on K2C\N{T);
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and F1=^r on 0$(T)C\N(T), where 9~ is a linear transformation of

0t(T)nN(T) onto K3 or^"is an isomorphism of ^(F)n7V(F)intoA'3.Take

P1 to be the projection of V onto KX®KZ along [K2 C\N(T)]®[0$(T) C\N(T)].

Note that T1eJi'\{ and only if F is an isomorphism of 0i(T)C\N(T)

onto K3. Thus, Fx e Ji if and only if codimension of 0#(T) equals dimen-

sion of N(T). Thus by Theorem 6, F G 08 if and only if F, e Ji. Thus,

F g â? if and only if codimension of 0i(T) equals dimension of N(T). In

particular, if Fis a matrix in B[m] such that T^(c) = c, then Fhas a closed

range and a finite dimensional null space. So, if such a matrix has a non-

zero null space, then it belongs to the boundary of the maximal group if

and only if codimension of 0i(T) equals dimension of N(T).
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