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AN INTEGRAL EQUATION ARISING
IN POTENTIAL  THEORY1

H.  T.  JONES AND  E.  J.  SPECHT

Abstract. This paper gives an integral equation, the solution of

which is a solution of a classical problem in potential theory : Given

a region with boundary 38, what distribution of charge on á? will

produce a potential having specified values on 331 The paper also

indicates briefly how the integral equation is useful in simplifying

certain proofs and extending certain theorems in potential theory.

The definitions and notation of this paper are those of [2, pp. 353-355].

Let a be a function having a derivative Da. which satisfies a Holder

condition on ¿%. Let Y be the potential due to the double-layer distri-

bution whose moment-density is a; that is, let

/'s«

Yz =      oís ■ DUsTHs — x,r¡s — y) ds       iz = x + iy),
Jo

for each z in the plane, except those on M. Then [1, pp. 42-46] the normal

derivative of Y is continuous on ^¿u^, where á?¿ denotes the union of

the interior regions determined by 88. An expression for the limit of this

normal derivative at the point t,s on 8S is the Cauchy principal value

integral j"^ (Da ■ D1A(j, t)), where £>,A is the first-place partial derivative

of A. The function whose value at s is this integral will be denoted by 5a.

Lemma 1. There exists a continuous function vx such that \vcnz_^a Du í>íz=

Sets, where <t>{z=^ fa • log(c/|£—z\))for all z in á?f.

Proof. The function v1 with the property stated exists if the equation

v1 — Tï>1=—S<x./Tr has a continuous solution. Since the operator Tis com-

pact in „SP2 [0, sm], it follows by the Fredholm theory that this equation has a

solution if and only if J^ (S'a • fj) = 0 îorj=l, ■ ■ • , m, where ipu • • •, ym
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are m linearly independent solutions of the equation ipj — Tipj=Ç), the op-

erator £ being defined for each a in 38 by the equality Txs=l¿ (x • K(s, if).

The functions fi,'",y>m [2, equation (2)] defined by the relations

fjS = \\c¡   if £j e 38j,

= 0      if&eak,kf*j,

are such solutions, so the conditions J"^ (Sa ■ ■fj) = 0 are equivalent to the

conditions $SSJ_ Sxs ds=0, which, by Green's Second Identity, are satisfied

because 5a is the normal derivative on 38 of a function harmonic in 38\.

Then every function of the form *i+2ili a^,, where al5 ■ • • , am are

numbers, is a solution of the equation y—Ty=—Sx¡Tr. Hence every func-

tion whose value at each point z of 381 is \j¡ ((íi+Jíii ûjÇ'î) ' log(c/|^—z|))

has the property that the limit of its normal derivative at t,s is Sxs. That

Vx is continuous on 38 follows from the form of the solution given by the

Fredholm theory, when one takes into account property (iv), p. 362, of [2]

and the fact that Sx is continuous. Since every <ps satisfies a Holder con-

dition on 38, every solution given above is continuous on 38.

Lemma 2. There exists a continuous function v% such that Yz=

$s (vx-\og,(cl\i-z\))for all z in 38t.

Proof. Let vx be a particular function whose existence is assured by

Lemma 1, and let O; be defined as in that lemma. Then lim2^Çs £uYz=

limz^Çs Du (¡»¿z, and hence, by the uniqueness, to within an additive

constant, of the solution of the interior Neumann problem, there exists a

function Af such that Y = 0¿+A¿ and, for some numbers dlt' • •, dm,

AiZ=dk if z is in the interior of 38k, for k=\, • ■ ■ , m. If alt ■ • ■ , am are

chosen so that

a¡    (q>¡ ■ log(c/|í - z])) = -d„
Jj

then

Yz = íoi-log(c/|í-z|))
Jj

for ail z in 38^ where Vi=J'1+2í=i ai(Pr

Lemma 3. There exists a continuous function v2 such that <t>tz=x¥z for all

z in the exterior, 38\, of 38, where <S>cz=jj (v2 ■ log(c/|£—z|)).

Proof. There exists a function v2 such that limz_>Çs Du <$>ez=Sxs if the

equation v2+Tv2 = Sx¡tt has a solution. It does, in fact, have a unique

solution v2, as can be seen by noting that the equation y + Ty=0 has no

nontrivial solutions and then applying the Fredholm theory in =S?2[0, sm].
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Hence, by the uniqueness, to within an additive constant, of the solution

of the exterior Neumann problem, there is a constant function Ai such

that Yz= <P,z+A,z for all z in 38 e.

Since Y is a double-layer potential, lim^ Y=0. Since the masses of Y

and A, are both zero, the mass of <t>e is zero, which implies that lim^ 0^=0

because O^ is a single-layer potential. Therefore lim^ Ai=0, so that

A^O, and hence Y=<Di on 38 c.

The continuity of v2 can be established by a proof similar to that of the

continuity of vx in Lemma 1.

Lemma 4. If a., vlt and v2 are defined as in the preceding lemmas, then

(1) 27rfa = Lfa + v2)

and

(2) 2tto. = Lfa — v2),

where L is the operator defined for each y in 38 by Lyt=^j iy • A(t, /)).

Proof. If Y; and Y^ denote the restrictions of Y to á?f and 381,

respectively, then by Lemmas 2 and 3, and by the well-known boundary

behavior of a double-layer potential,

Lvxs = lim YjZ = 7ras + 7r7as
z-»Çs

and

Lv2s = lim Y¿z = — 7ras + ttTols.

Adding these equations gives (1) and subtracting them gives (2).

Lemma 5.    Ifa., v1} and v2 are defined as in the preceding lemmas, then

(3) Vi — v% — Tfa + v2) = — (2/7r)5a

and

(4) Tfa - v2) = Vl + v2.

Proof. On the one hand, using the representations of Y^ and Y¿ as

single-layer potentials given in Lemmas 1 and 2, limz_Çs Z)uY¿z =

—ttv^+ttTvj^s and limz^Çs Dux¥ez=Trv2s+-rrTv2s; on the other hand,

using the definition of Y as a double-layer potential, limz^Çs Z>MYiz=

lim^çs Du ̂ ¿—Sas. Adding the first two of these equalities and taking

account of the third gives (3); subtracting the first two and taking account

of the third gives (4).
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Theorem 1. If a. is a function such that Da. satisfies a Holder condition on

38, then there is a continuous function ß such that x=Lß and

(5) (T2 - I)ß = (l/7T2)Sa.

Proof. The existence of the function ß is given by Lemma 4 by taking

ß to be (v1—v2)¡2tt. Operating on equation (4) with T and using the result

in equation (3) gives equation (5).

Remark. Operating on equation (5) with L and making use of the

fact that LT2=T2L gives the equality LSo.=Tr2(T2—I)a, valid for all a

satisfying the hypotheses of the theorem.

The following lemma, an extension of a result obtained by Kellogg [1,

p. 46, footnote], gives an alternative characterization of the operator S.

Lemma 6. If a. is a function such that Da. satisfies a Holder condition on

3$, then Sai=DLDa.

Proof. For each s in J and each sufficiently small positive number e,

let $={t:\A(s, t)\<e}. Since Da and DxAis, i) are continuous on J—S,

it follows that

= lim f     (
e->0+Jj-g

DLDas = lim (Da • ¿VHs, t)),
e^O+Jj-g

provided that the limit exists and the convergence to the limit is uniform

with respect to s.

To establish these facts, note that

(Da • D,A(s, i)) = (Dai - Das)(D,A(s, f)) dt
Jj-g Jjf-g

ts) i     D,A(s,
Jjf-g

(6)
+ (Das)        D1A(s,t)dt.

Since Da satisfies a Holder condition on 38 with exponent d, say, and

since DXK is continuous on,/ xJ except at points (s, t) where ^0, t)=0,

where it behaves like \A\~X, it follows that the integrand of the first integral

above behaves like \A(s, 0ld_1> and hence the corresponding integral over

J exists in the sense of Lebesgue. Moreover, the convergence of the first

integral is uniform, being like that of \Ais+e, s)\d. Now

n w    rt Xjs,t)D1X(s,t) + Y(s,t)D1Y(s,t) 1

X\s, t) + Y\s, t) Ais, t)

where X and Y, defined on p. 363 of [2], have the properties that Aïs, i)

and y"0, t) satisfy a Holder condition on 8$ with the same exponent b as of

that satisfied by D£ and that DxXis, i) and Dx Yis, «) are continuous except
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at points t where A(s, 0=0, where they behave like \A(s, i)l"_1. Therefore,

for some a>0,

f     £,A(s, i) dt
Jj-3

< a(\A(s, s - e)\" + \A(s, s + e)\b)

+ |log \A(s, s - e)\ - log \A(s, s + e)\ \,

from which both the existence of the limit and the uniform convergence for

the second integral in (6) follow. This completes the proof of the lemma.

Theorem 1 and Lemma 6 can be used to give a more elegant proof of the

existence and properties of the function Q„ than was given in [2]. Finally,

two other applications of Theorem 1 will be given in the next two theorems.

Lemma 7.   If x and ß are functions as in Theorem 1, then (ß, Sx) =

-\\Dx\\2.

Proof.    Since the function DLDx=Sx is continuous on 38,

(ß, Sx) = \ (x ■ DLDx) = - f (£a ■ L£a) = -1| £a||2.
Jj Jj

Theorem 2. Let :EE0 be the subspace of M; which is orthogonal to the

functions <px, • ■ • , <pm, let || £2||0 be the norm of T2 on ¿E 0, let a be a function

such that Dx satisfies a Holder condition on 33, let ß be the function such

that x = Lß, whose existence is assured by Lemma 4, let ß0 be the projection

ofß on ¿t0, and let ßx=ß~ßo- Then

Proof. From Theorem 1 and Lemma 7, (T2ß, /3>-||/3||2=-||£a||2/7r2.

Taking account of the facts that \\ß\\2=\\ßi\\2+\\ß0\\2, that (T2ß0, ßx) =

(ß0,T2ßx)=0, and that T2ßl = T2ati(ß,?i)<Pi)=IZi<ß, ?^ = ßu

the above equality yields (î"2^, /30>— ¡¡/?0||2= — [|Z>ot|[2/-^2, or \\ß0\\2^

\\Dx\\2l7T2(l-\\T2\U). Finally,

f x2 = (x,ß) = |«| ■ \\ß\\ = ||a|| (Wßxf + ||£a||2/7T2(l - \\T2\\0)y
Jj

The following result was obtained by Warschawski [3, p. 11] by using

complex function theory. The proof given here would therefore be useful

in extending his results to higher dimensions.

Theorem 3. For j=m + l, m+ 2, ■ ■ ■ , let <p} be the eigenfunction of T

associated with the eigenvalue X¡, and let ipj=L<fij. Then

\\Dy,i\\2 = (?r2(X2-l)IX2)\\cpi\\2.
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Proof. From equation (5) and Lemma 7 the result is obtained by

noting that (T2^, ç>;>=|l9>,ll2/4
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