ADDENDUM TO "A STRONGER BERTRAND'S POSTULATE WITH AN APPLICATION TO PARTITIONS"

ROBERT E. DRESSLER

In [2] we proved, using only elementary techniques, that every positive integer, except $1,2,4,6$ and 9 , is the sum of distinct odd primes. The purpose of this note is to bring to light some closely related results of which the author was unaware when [2] was published. These results were brought to the author's attention by Professor A. Makowski. They are as follows:
H. E. Richert [5], using elementary methods, proved that every integer greater than 6 is the sum of distinct primes (not necessarily odd). R. Breusch [1], using intricate analytic methods, proved that if $x \geqq 7$ then between x and $2 x$ there is at least one prime of each of the following forms: $4 k-1,4 k+1,6 k-1,6 k+1$. A. Makowski [3], using these deep analytic results of Breusch and an elementary result of Richert [4], proved that every integer greater than $55,121,161,205$ is the sum of distinct primes of the form $4 k-1,4 k+1,6 k-1,6 k+1$ and that these lower bounds are the best possible.

Bibliography

1. R. Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, dass zwischen x und $2 x$ stets Primzahlen liegen, Math. Z. 34 (1932), 505-526.
2. R. E. Dressler, A stronger Bertrand's postulate with an application to partitions, Proc. Amer. Math. Soc. 33 (1972), 226-228.
3. A. Makowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 125-126. MR 22 \#7991.
4. H.-E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk. Mat. Tidsskr. 31 (1949), 120-122. MR 11, 646.
5. - Über Zerfällungen in ungleiche Primzahlen, Math Z. 52 (1949), 342-343. MR 11, 502.

Department of Mathematics, Kansas State University, Manhattan, Kansas 66502

Received by the editors October 3, 1972.

