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THE «-GENERATOR PROPERTY
FOR   COMMUTATIVE  RINGS1

ROBERT   GILMER

Abstract. Let D be an integral domian with identity. If for

some positive integer n, each finitely generated ideal of D has a basis

of n elements, then the integral closure of D is a Prüfer domain.

This result generalizes to the case of commutative rings with identity

that contain zero divisors.

All rings considered in this paper are assumed to be commutative. If

R is a ring and if « is a positive integer, then following [7], we say that R

has the zz-generator property if each finitely generated ideal of R has a

basis of zz elements. Thus Bezout domains have the 1-generator property,

Dedekind domains have the 2-generator property, and the rings of finite

rank n of I. S. Cohen [2] have the zz-generator property. In this note, we

prove (Corollary 3) that the integral c'osure of a domain with the zz-

generator property is a Prüfer domain. xhen we extend this result in

Corollary 5 to a class of rings with zero divisors. We begin with an easy

result on generating sets for a module.

Proposition 1. Assume that R is a ring, N is a unitary R-module, and

S and T are sets of generators for N. If M is a maximal ideal of R, then

there is a subset S' of S such that \S'\^\T\ and such that N=N' + MN,

where N' is the submodule of N generated by S'.

Proof. The sets {s+MN\se S} and {t + MN\te T} span the (R/M)-

vector space N/MN, and hence each of these sets contains a basis for

N/MN. If S'ç S is such that {s+ MN\s e S'} is a basis for N/MN, then it

is clear that N=N' + MN, and |S"|^|F| because any two bases for N/MN

have the same cardinality.

Corollary 1. Let the notation be as in Proposition 1. If |F|=zi<oo

and if {Mx}^eA is the set of maximal ideals of R, then S contains a set of

generators for N of cardinality at most zz|A|.
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Proof. For each X in A, we choose a subset Sx of S such that \Sx\^n

and N=(SX) + MXN. If S'=\JXSX, then |S'|=«|A| and it is clear that

N=N'+MXN for each X in A. Therefore Mx(NlN')=(N¡N') for each X in

A. Since TV/A/' is finitely generated, it follows that there is an element

mx e Mx such that \—mk annihilates N\N' [12, p. 50]. Consequently, the

annihilator A of N\N' is contained in no Mx, 1 is in A, and N=N'. This

completes the proof of Corollary 1.

Note that the bound of Corollary 1 is of interest only in the case where

A is finite, for if TV is a finitely generated £-module, for an arbitrary ring £,

then each set of generators for N contains a finite set of generators for N.

Corollary 2. IfR is a quasi-local ring, ifN is a unitary R-module, and

if S and T are sets of generators for N, where T is finite with n elements,

then S contains a finite set {.yjLi of generators for N, where k^n.

We remark that the bound given in Corollary 1 cannot, in general, be

improved. For example, if £ is semi-quasi-local with n maximal ideals

Mx, M2, • ■ ■, Mn and if for l^i^n, m¡ e (fj¿-¿¿ M¡) — Mt, then S =

{mi}i=1 generates £ as an R-module, but no proper subset of S generates £.

Theorem 1. £ei a and b be nonzero elements of the integral domain D

with identity, and let i and j be nonnegative integers such that i+j=n>0.

If aW e (an, ■ ■ ■ , tf+ty-1, a^b^1, ■ ■ ■ ,bn), and if J is the integral

closure of D, then {a, b}J is invertible.

Proof. We prove that {a, b}JM is principal for each maximal ideal

M of J. By assumption, there is a homogeneous polynomial /in D[X, Y]

of degree n such that/(a, b) = 0 and such that the coefficient of X'Y> in

/is —1. Therefore, the equation 0=f(a, b)/an=f(l, b/a) shows that b\a

is a root of the polynomial/(l, Y)e D[Y], where the coefficient of Y'

inf (I, Y) is —1. Consequently, b/a or a\b is in Ju [17, p. 19], and hence

{a, b}JM=aJM or bJM. In either case, {a, b}JM is principal, and {a, b}J

is invertible.

We remark that in Theorem 1, the ideal {a, b}D need not be invertible,

even in the case where £ is quasi-local. For example, in £=£[[Ar2]][A'3],

where £ is a field, X3n e (X2n, X2ln-vX3, ■ ■ ■ , X*X3{n~l)) for each integer

n>l, but {X2, X3}D is not invertible. Our proof of Theorem 1 shows that

{a, b}D is invertible if DM is integrally closed for each maximal ideal M

of £ containing {a, b).

Corollary 3. If D is an integral domain with identity and if D has the

n-generator property for some positive integer n, then the integral closure

of D is a Prüfer domain.
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Proof. Since each finitely generated fractional ideal of D has a basis

of zz elements, each overring of D has the zz-generator property. Hence to

prove Corollary 3, it suffices to prove that an integrally closed quasi-local

domain / with the zz-generator property is a valuation ring. Let a, b e

J— {0}. By assumption, (a, b)n has a basis of zz elements, and Corollary 2

implies that {an~iz3t}"=0 contains a set of zz generators for (a, b)n. Con-

sequently, an-ibi e (an, • • • , an~i+1bi^1, an^i-1bi+1, ■ ■ ■, b") for some i,

and the proof of Theorem 1 shows that ajb or b\a is in J. Therefore / is a

valuation ring and our proof of Corollary 3 is complete.

We remark that some special cases of Theorem 1 already appear in

the literature [1, Proposition 3.9], [4, Theorem 4.7], [5, Proposition 20.2],

but our proof of Theorem 1 is not similar to the proofs of any of these

special cases.2 Moreover, E. Matlis [16, Lemma 2] has given a proof of

our Corollary 3 for the case zz=2. The converse of Corollary 3 fails

miserably; If Fis a subfield of the field AT and if K\F is infinite dimensional

algebraic, then D = F+XK[[X]] has integral closure Älpf]], a rank 1

discrete valuation ring, but D has the zz-generator property for no positive

integer n.

In [2], I. S. Cohen considers the concept of a ring of finite rank, defined

as follows. If R is a commutative ring and if zz is a positive integer, then

R has rank n if each ideal of R has a basis of zz elements (more generally,

this concept can be extended to a module over R; see [9] and its bibliog-

raphy). It is clear that a ring of finite rank is Noetherian. In [2, §4],

Cohen proved that if D is a Noetherian domain with identity of finite rank,

then dimití; this conclusion is also valid for Noetherian rings with

identity [9]. For the domain case we obtain an easy proof of this result,

based on Corollary 3.

Corollary 4. If D is an integral domain with identity of finite rank,

then the dimension of D is at most 1.

Proof. If / is the integral closure of D, then J is a Prüfer domain

by Corollary 3. Since J is also Noetherian, / is a Dedekind domain, and

hence dim/=dim FJ^l.

An integrally closed domain D of finite rank is a Dedekind domain,

and hence D has rank 2. What is the structure of an integrally closed ring

of finite rank? To answer this question, we seek a generalization of

Theorem 1.

2 Two papers of H. Bass, Torsion free and projective modules, Trans. Amer. Math.

Soc. 102 (1962), 319-327, and On the ubiquity of Gorenstein rings, Math. Z. 82 (1963),
8-28, also contain results on minimal generating sets for modules and ideals. The

relevant parts of Bass' papers are §1, especially Proposition 1.4, of the first paper and

§7, especially Lemma 7.4, of the second.
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Proposition 2. £ei a and b be elements of the ring R with identity.

Assume that a is regular in R and that there exist nonnegative integers i

andj such that i+j=n>0 and aW e ({an-kbk\0^k^n, k^j}). If S is the

integral closure of R, then {a, b}S is invertible.

Proof. We use induction on n, the case n= 1 being obvious. For «=2,

we have ab e (a2, b2) or a2 e (ab, b2) or b2 e (a2, ab). In the first case,

Proposition 3.9 of [1] shows that {a, b}S is invertible. If a2 e (ab, b2) £ (b),

then b is regular in £ so there is no loss of generality in assuming that

b2 6 (a2, ab)—say b2=ra2+tab, where r, t e R. Then (b¡a)2-t(b¡a)-r=0,

and hence b/a e S so that {a, b}S=aS is invertible. We assume that

Proposition 2 is true for «=/, where t^.2, and we consider the case

n=t+l. Since {a, b}S is invertible if and only if {a, b}SM is invertible

for each maximal ideal M of S, we prove that {a, b}S is invertible under

the assumption that S is quasi-local and integrally closed. There is a

homogeneous polynomial /= 2*to skXk Yt+1~" in S[X, Y] of degree Z+l

such that Si=-l and f(a, b)=0. Therefore 0=f(a, b)lat+1=f(l, b\a). If

f=0 we conclude that b\a is integral over S so that again b/a e S and

{a, b}S=aS is invertible; we handle the case /=r+l similarly—b is then

regular in S. If 0</<i+l, then it follows from the equation 0 =

2*=o sk(b¡a)t+l~k that s0bja is integral over S [5, Lemma 7.1], and hence

s0b/a=u is in S. If « is a unit of S, then a = u~1s0b, and once again {a, b}S

is principal, regular, and therefore invertible. If « is a nonunit of S,

then we make the substitution au = s0b in the equation 0=2j£o skakbt+1~k,

obtaining

0 = au ■ b* + Sxab* + s^b'-1 + ■ ■ ■ + st+1at+1.

Since a is regular in S, it follows that

0 = (u + SxW + s^b1-1 + ■■■ + st+1af.

If />1, we have a reduction to the case where « = /, and if i=\, then

u+Sx = u— 1 is a unit of S, for « is a nonunit of 5". Consequently, bl e

(ab1-1, • ■ ■ , a1), and again the induction hypothesis implies {a, b}S is

invertible. By the principle of mathematical induction, our proof is

complete.

Again our proof of Proposition 2 shows that {a, b}R is invertible in £

if RM is integrally closed for each maximal ideal M of £ containing

{a,b}.

A commutative ring £ with identity is a Prüfer ring if each finitely

generated regular ideal of £ is invertible [14, Chapter 10]. In attempting

to generalize Corollary 3 to the case of rings with zero divisors, we en-

counter new difficulties; these difficulties stem from the fact that a Prüfer

ring need not have what J. Marot in [15] refers to as property (P)—

the property that each regular ideal is generated by its set of regular
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elements (see [8] for an example of a Prüfer ring that does not have

property (P)). But for rings with property (P)—and this class of rings

includes the classes of Noetherian rings, rings with few zero divisors [3,

p. 203], and additively regular rings [11]—we obtain an extension of

Corollary 3.

Corollary 5. If R is a ring with identity, if R has property (P), and

if R has the n-generator property for some positive integer n, then the

integral closure of R is a Prüfer ring.

Proof. The hypothesis we have made concerning R carries over to

each overring of/?, and hence we assume, without loss of generality, that

R is integrally closed. We wish to prove that each finitely generated regular

ideal A of R is invertible; since R has property (P), A is generated by a

finite set of regular elements. Hence to prove that R is a Prüfer ring, we

need only prove that if a, b are regular elements of R, then (a, b) is

invertible [5, Proposition 18.2]. Let {Mx} he the set of maximal ideals of

R that contain {a, b} and for each Mx, let NX=R — MX. We observe that

MxRNx is the unique maximal regular ideal of RNx; thus if C is a regular

ideal of R not contained in M x, then because C is generated by its set of

regular elements, there is a regular element c of C not in Mx—that is, C

meets Nx. This means, in particular, that MxRNx is the unique maximal

ideal of RNx containing a or b. Because (a, b)n has a basis of zz elements,

Corollary 2 shows that there is a subset H of {an^kbk}k=0 such that \H\^n

and such that the image of H under the canonical imbedding of R into

RM generates the image of (a, b)n under this imbedding. Now üMj~

(Rnx)mxrx and MxRNx is the unique maximal ideal of RNx containing

HRNx or (a, b)nRNx; consequently HRNx = (a, b)nRNx, and

an-iDi e (an; ... ^ an-i+xbi-x^ an-i-l0i+l ^ . . . > bn)RNk

for some z". By Proposition 2, (a, b)RNx is invertible so that ab e (a2, b2)RNx.

It follows that ab e f)x (a2, b2)RNx, and since {Mx} is also the set of

maximal ideals of R that contain {a2, b2}, f)x (a2, b2)RNx = (a2, b2). There-

fore ab e (a2, b2), and (a, b) is invertible by Proposition 2.

Our next result is clear; again it generalizes to rings with zero divisors

some previous considerations for integral domains.

Corollary 6. IfR is a ring with identity of finite rank, then the integral

closure of R is a Noetherian Prüfer ring.

Davis has given a satisfactory description of Noetherian Prüfer rings

in [3, §3], so we shall not pursue the subject here, but we do make a few

remarks concerning such rings. A zero-dimensional semilocal ring is an

integrally closed Prüfer ring of finite rank (see [9]), but the rank of such a
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ring need not be less than n for any fixed positive integer n. A Noetherian

Prüfer ring £ of finite rank need not have nilradical 0, even if its dimension

is 1 and £ is indecomposable, but it is true that the dimension of a Noether-

ian Prüfer ring is at most 1.

A few open questions lie close at hand. In connection with Corollary 5,

we have the following question. If £ is a ring with identity with the n-

generator property, does £ have property (P)? In particular, if A is an

invertible ideal of £, is A generated by its set of regular elements? (The

answer to the second question is probably negative.) In the background,

a question previously raised in the literature (see [10], [6], [7]) is lurking:

If £ is a Prüfer domain, does £ have the «-generator property for some

positive integer n ; more specifically, does D have the 2-generator property ?
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