THE H^p CLASSES FOR α -CONVEX FUNCTIONS

P. J. EENIGENBURG¹ AND S. S. MILLER

ABSTRACT. Given $\alpha > 0$, we determine the H^p class to which an α -convex function belongs.

Introduction. In this paper we continue the study ([4], [5], [6], [7]) of \mathcal{M}_{α} , the class of α -convex functions. Our purpose is to obtain the H^p class to which a given α -convex function belongs.

DEFINITION. Let $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ be analytic in the unit disc D, with $(f(z)/z)f'(z)\neq 0$ there, and let α be a real number. Then f(z) is said to be α -convex in D if and only if

(1)
$$\operatorname{Re}\left[\left(1-\alpha\right)\frac{zf'(z)}{f(z)} + \alpha\left(1+\frac{zf''(z)}{f'(z)}\right)\right] > 0.$$

It is known [5] that if f(z) is α -convex then f(z) is starlike and univalent in D. Moreover, if $\alpha \ge 1$ then f(z) is convex in D. In our investigation we shall employ the H^p results concerning starlike and convex functions [3]. We shall also make use of the following subclasses, first introduced by Reade [11], of the class of close-to-convex functions.

DEFINITION. Let K_{β} denote the class of functions f(z), analytic in D, for which there exists a convex function h(z) such that

$$|\arg(f'(z)/h'(z))| \le \beta \pi/2.$$

The following theorem can be found in [7].

Theorem 1. If
$$f(z) \in \mathcal{M}_{\alpha}$$
 $(0 \le \alpha \le 1)$, then $f(z) \in K_{1-\alpha}$.

PROOF. Since $f(z) \in \mathcal{M}_{\alpha}$ one easily checks that $f(z)(zf'(z)|f(z))^{\alpha}$ is starlike, so that

(3)
$$h(z) \equiv \int_0^z \frac{f(w)}{w} \left(\frac{wf'(w)}{f(w)}\right)^\alpha dw$$

Presented to the Society, January 26, 1973; received by the editors July 31, 1972 and, in revised form, August 31, 1972.

AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30A72.

¹ The first author acknowledges support received under a Western Michigan University Faculty Research Fellowship.

is convex. The result then follows from the identity

$$f'(z)/h'(z) = (zf'(z)/f(z))^{1-\alpha}$$

and the fact that f(z) is starlike.

We now make the following two observations.

- (a) If $f(z) \in \mathcal{M}_{\alpha}$ ($\alpha > 0$), then f(z) is continuous in \bar{D} (if ∞ is allowed as a value) and assumes no finite value more than once.
- (b) If $f(z) \in \mathcal{M}_{\alpha}$ ($\alpha > 0$), and L(r) denotes the length of $\{w = f(z) : |z| = r\}$, then L(r) = O(M(r)) as $r \to 1$.

Pommerenke [10] obtained the results in (a) and (b) for $f(z) \in K_{\beta}$, $\beta < 1$, and consequently by Theorem 1 they follow for $f(z) \in \mathcal{M}_{\alpha}$, $0 < \alpha < 1$. In case $\alpha \ge 1$, f(z) is convex and the results (a) and (b) are well known.

We further observe from (a) that none of the classes of starlike functions of a positive order (less than unity) is contained in \mathcal{M}_{α} for some positive α . This follows from the existence of bounded functions, starlike of any given order (less than unity), which do not extend continuously to \bar{D} [2]. The question of the order of starlikeness for the class \mathcal{M}_{α} remains open.

THEOREM 2. If $f(z) \in K_{\beta}$ and there exists a convex function h(z), not of the form $h(z)=a+bz(1+ze^{i\tau})^{-1}$, such that $|\arg(f'(z)/h'(z))| \leq \beta\pi/2$, then there exists $\varepsilon=\varepsilon(f)>0$ such that

$$f(z) \in H^{1/(1+\beta)+\varepsilon}$$
 and $f'(z) \in H^{1/(2+\beta)+\varepsilon}$.

PROOF. We first observe that if $\beta=0$ or $\beta=1$, these results are known [3]. Writing f'(z)=h'(z)P(z) where $|\arg P(z)| \le \beta\pi/2$, it follows that $P(z) \in H^{\lambda}$, $\forall \lambda$, $\lambda < 1/\beta$. Also, from Theorem 3 of [3], $h'(z) \in H^{1/2+\delta}$ for some $\delta=\delta(h)>0$. Application of Hölder's inequality with

$$p = (\frac{1}{2} + \delta)(\beta + 2 - \delta),$$

$$q = (\frac{1}{2} + \delta)(\beta + 2 - \delta)(\beta/2 + \delta\beta + 3\delta/2 - \delta^2)^{-1}$$

yields

$$\int_{-\pi}^{\pi} |f'(z)|^{(\beta+2-\delta)^{-1}} d\theta \leq \left(\int_{-\pi}^{\pi} |h'(z)|^{p/(\beta+2-\delta)} d\theta \right)^{1/p} \left(\int_{-\pi}^{\pi} |P(z)|^{q/(\beta+2-\delta)} d\theta \right)^{1/q}.$$

If δ is sufficiently small, each of the integrals on the right remains bounded as r tends to 1. Hence there exists $\varepsilon = \varepsilon(f) > 0$ such that $f'(z) \in H^{1/(\beta+2)+\varepsilon}$. By a well-known theorem of Hardy-Littlewood [1, p. 88], $f(z) \in H^{1/(\beta+1)+\varepsilon}$ for a possibly different value of ε .

We require the following integral representation [6] for functions in \mathcal{M}_{α} , $\alpha > 0$: the function f(z) is in \mathcal{M}_{α} , $\alpha > 0$, if and only if there exists a

starlike function s(z) such that

(4)
$$f(z) = \left[\frac{1}{\alpha} \int_0^z [s(\zeta)]^{1/\alpha} \zeta^{-1} d\zeta \right]^{\alpha}.$$

If $\alpha > 2$, f(z) is bounded [4] and $f'(z) \in H^1$ (since f(z) is convex).

Let us denote by $f_{\alpha}(z)$, the function obtained in (4) by letting s(z) be the Koebe function, $k(z)=z(1-z)^{-2}$. It follows from (3) that h(z) is of the form $z(1-ze^{i\tau})^{-1}$ if and only if $f(z)=e^{-i\tau}f_{\alpha}(ze^{i\tau})$. Theorems 1 and 2 then yield the following.

THEOREM 3. If $f(z) \in \mathcal{M}_{\alpha}$ $(0 \le \alpha \le 1)$ and is not a rotation of $f_{\alpha}(z)$, then there exists $\varepsilon = \varepsilon(f) > 0$ such that

$$f(z) \in H^{1/(2-\alpha)+\varepsilon}$$
 and $f'(z) \in H^{1/(3-\alpha)+\varepsilon}$.

We remark that for $0 \le \alpha \le 2$, $f_{\alpha}(z) \notin H^{1/(2-\alpha)}$ (H^{∞} if $\alpha=2$), although $f_{\alpha}(z) \in H^{\lambda}$, $\forall \lambda$, $\lambda < 1/(2-\alpha)$.

We now wish to establish Theorem 3 for $1 < \alpha \le 2$. In this case f(z) is both convex and starlike. These geometric properties give rise to the usual Herglotz formulas, which in turn yield probability measures μ_1 and μ_2 , respectively. We can suppose these measures to be normalized so that

$$\frac{1}{2}[\mu_i(t+0) + \mu_i(t-0)] = \mu_i(t), \quad \int_{-\pi}^{\pi} \mu_i(t) \, dt = 0 \qquad (i=1,2).$$

The normalization determines μ_1 and μ_2 uniquely; we shall call them the convex and starlike measures associated with f(z), respectively.

LEMMA 4. Let f(z) be an unbounded convex function and let μ_1 be the convex measure associated with f(z). If the maximum jump of $\mu_1(t)$ is γ , then $f(z) \in H^{\lambda}$, $\forall \lambda$, $\lambda < 1/(2\gamma - 1)$, and $f'(z) \in H^{\lambda}$, $\forall \lambda$, $\lambda < 1/(2\gamma - 1)$.

PROOF. We first observe that since f(z) is unbounded, $\gamma \ge \frac{1}{2}$ [8, pp. 67–72]. The proof of Lemma 4 then follows from [3, p. 345].

THEOREM 5. Let f(z) be an unbounded convex function. If the maximum jump of $\mu_1(t)$ is γ then the maximum jump in $\mu_2(t)$ is $\gamma - \frac{1}{2}$.

PROOF. Since f(z) is convex, either (a) f(z) is continuous on \overline{D} with the exception of one point, say z_0 , and at this point, $f(z) \to \infty$ as $z \to z_0$ with $|z| \le 1$, $|z_0| = 1$, or (b) f(D) is a domain whose boundary is two parallel lines [8]. In case (b), the result of Theorem 5 is obvious; hence, we assume case (a). We also assume that the maximum jump, γ , in $\mu_1(t)$ occurs at t=0. It follows by the continuity remark in (a) that the maximum jump in $\mu_2(t)$, call it β , also occurs at t=0.

First, suppose $\gamma - \frac{1}{2} < \beta$. It is well known (see e.g. [12]) that f(D) contains a sector of vertex angle $2\pi\beta$. Hence, for some constant C,

$$C((1+z)/(1-z))^{2\beta} < f(z), z \in D.$$

Thus, $\int_{-\pi}^{\pi} |f(z)|^{1/2\beta} d\theta$ becomes unbounded as r tends to 1, contradicting Lemma 4 (since $2\gamma - 1 < 2\beta$).

We now suppose $\beta < \gamma - \frac{1}{2}$. Choosing δ such that $\beta < \delta < \gamma - \frac{1}{2}$, a result of Pommerenke [9] gives

$$M(r, f) = O((1 - r)^{-2\delta}).$$

The Cauchy formula yields

$$M(r, f') = O((1 - r)^{-2\delta - 1}).$$

On the other hand, since zf'(z) is starlike

$$|zf'(z)| \ge K|z|/|1-z|^{2\gamma},$$

where K is a constant [9]. But this contradicts the fact that $2\delta+1<2\gamma$. The result follows.

THEOREM 6. If $f(z) \in \mathcal{M}_{\alpha}$ $(0 \le \alpha < 2)$ and is not a rotation of $f_{\alpha}(z)$, then there exists $\varepsilon = \varepsilon(f) > 0$ such that

$$f(z) \in H^{1/(2-\alpha)+\varepsilon}$$
 and $f'(z) \in H^{1/(3-\alpha)+\varepsilon}$.

If $f(z) \in \mathcal{M}_2$ is unbounded, then f(z) is a rotation of $f_2(z)$.

PROOF. By Theorem 3, we may assume $\alpha > 1$. We also take f(z) unbounded. Let μ_1 and μ_2 be as in Theorem 5. Since $f(z) \in \mathcal{M}_{\alpha}$, $\mu = (1-\alpha)\mu_2 + \alpha\mu_1$ is a measure on $[-\pi, \pi]$. If γ denotes the maximum jump in μ_1 , then the maximum jump in μ_2 occurs at the same point and equals $\gamma - \frac{1}{2}$. Thus, the maximum jump in μ is $\gamma + \frac{1}{2}(\alpha - 1)$. The rotations of $f_{\alpha}(z)$ are given by equating this number with unity; i.e., by setting $\gamma = \frac{1}{2}(3-\alpha)$.

Thus, let us assume $\frac{1}{2} \le \gamma < \frac{1}{2}(3-\alpha)$. We observe that if $\alpha=2$ then $\gamma=\frac{1}{2}$, and consequently there is only one unbounded function in \mathcal{M}_2 (up to rotations).²

By Lemma 4, $f'(z) \in H^{\lambda}$ $(\lambda < 1/2\gamma)$. Since $1/2\gamma > 1/(3-\alpha)$ we may choose $\varepsilon = \varepsilon(f) > 0$ so that $1/2\gamma > 1/(3-\alpha) + \varepsilon$. Hence, $f'(z) \in H^{1/(3-\alpha)+\varepsilon}$, and, for perhaps a different ε , $f(z) \in H^{1/(2-\alpha)+\varepsilon}$.

² M. O. Reade has pointed out to the authors that this result is also obtained by considering $g(z) = \sqrt{f(z^2)}$, which is odd and convex, whenever $f(z) \in \mathcal{M}_2$.

REFERENCES

- 1. P. L. Duren, *Theory of H^p spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.
- 2. P. J. Eenigenburg, *Boundary behavior of starlike functions*, Proc. Amer. Math. Soc. 33 (1972), 428-433.
- 3. P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346.
- 4. S. S. Miller, Distortion properties of alpha-starlike functions, Proc. Amer. Math. Soc. (to appear).
- 5. S. S. Miller, P. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- 6. P. Mocanu, Une propriété de convexité généraliseé dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133. MR 42 #7881.
- 7. P. Mocanu and M. O. Reade, On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
- 8. V. Paatero, Über die konsorme Abbildungen von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. A33 (1931), no. 9.
- 9. Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25 #1279.
- 10. ——, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176-186. MR 30 #4920.
- 11. M. O. Reade, The coefficients of close-to-convex functions, Duke Math. J. 23 (1955), 459-462. MR 17, 1194.
- 12. T. Sheil-Small, Starlike univalent functions, Proc. London Math. Soc. (3) 21 (1970), 577-613. MR 43 #2207.

DEPARTMENT OF MATHEMATICS, WESTERN MICHIGAN UNIVERSITY, KALAMAZOO, MICHIGAN 49001

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420