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THE Hp  CLASSES FOR  a-CONVEX FUNCTIONS

P.  J.  EENIGENBURG1  AND  S.  S.  MILLER

Abstract.    Given a>0, we determine the H" class to which

an a-convex function belongs.

Introduction. In this paper we continue the study ([4], [5], [6], [7]) of

Ma, the class of a-convex functions. Our purpose is to obtain the Hv

class to which a given a-convex function belongs.

Definition. Let f(z)—z+2£U onzn be analytic in the unit disc D,

with (/(z)/z)/'(z)#0 there, and let a be a real number. Then/(z) is said

to be a-convex in D if and only if

r        zfiz)     /     z/"(z)\i
(1) Re(l-a)—+ «1+^    >0.

It is known [5] that if/(z) is a-convex then/(z) is starlike and univalent

in D. Moreover, if a^l then/(z) is convex in D. In our investigation we

shall employ the H" results concerning starlike and convex functions [3].

We shall also make use of the following subclasses, first introduced by

Reade [11], of the class of close-to-convex functions.

Definition. Let Kß denote the class of functions/(z), analytic in D,

for which there exists a convex function hiz) such that

(2) \axg(f'(z)lh'(z))\ ̂  pV/2.

The following theorem can be found in [7].

Theorem 1.   Iff(z) e Jta (O^a^l), thenfiz) e Kx_x.

Proof. Since /(z) e J¿x one easily checks that /(z)(z/'(z)//(z))a is

starlike, so that

,3, Kz)mi-mtrmdy,
Jo     w   \ j(w) I
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is convex. The result then follows from the identity

f'(z)lh'(z) = (zf'(z)lf(z)f-"

and the fact that/(z) is starlike.

We now make the following two observations.

(a) If/(z) £ -^ (a>0), then/(z) is continuous in D (if co is allowed

as a value) and assumes no finite value more than once.

(b) If/(z) E ^ (oc>0), and L(r) denotes the length of {w=/(z) : |z| =r},

then L(r)=0(M(r)) as r->-l.

Pommerenke [10] obtained the results in (a) and (b) for f(z) e Kß,

ß<l, and consequently by Theorem 1 they follow for/(z) £ JÍ„,, 0<<x<l.

In case a^l,/(z) is convex and the results (a) and (b) are well known.

We further observe from (a) that none of the classes of starlike func-

tions of a positive order (less than unity) is contained in Ji\ for some

positive a. This follows from the existence of bounded functions, starlike

of any given order (less than unity), which do not extend continuously to

D [2]. The question of the order of starlikeness for the class Jta remains

open.

Theorem 2. If 'f(z) e Kß and there exists a convex function h(z), not

of the form h(z)=a+bz(l+zeir)~1, such that |arg(/'(z)/A'(z))|^p\r/2, then

there exists e = e(/)>0 such that

f(z) e H1/a+ll)+s   and   f'(z) e HVi2+ß)+°.

Proof. We first observe that if ß=0 or ß= 1, these results are known

[3]. Writing f'(z)=h'(z)P(z) where |arg£(z)|=iS7r/2, it follows that

£(z) E H\ VA, X<\lß. Also, from Theorem 3 of [3], h'(z) e Hm+i for

some ô = ô(h)>0. Application of Holder's inequality with

p = (i + o)(ß + 2-Ô),

q = (\ + o)(ß + 2- á)(,9/2 + öß + 3Ô/2 - ó2)"1

yields

ÍV'(z)r+2^rl dB = ((" \h'(z)f{l,+2-s) ddflj" \P(z)\"n"+2-s) dd

If ô is sufficiently small, each of the integrals on the right remains bounded

as r tends to 1. Hence there exists e=e(/)>0 such that f'(z) e H1,lß+z)+e.

By a well-known theorem of Hardy-Littlewood [l,p. 88],/(z) e H1/(ß+1)+e

for a possibly different value of e.

We require the following integral representation [6] for functions in

Jta, a>0: the function/(z) is in ^#a, a>0, if and only if there exists a

\l/a



560 P.   J.   EENIGENBURG   AND   S.   S.   MILLER [May

starlike function s(z) such that

(4) f(z) = 1 (*[siOf%-1 ft
.a Jo

If a>2,/(z) is bounded [4] and/'(z) e Hl (since/(z) is convex).

Let us denote by fa(z), the function obtained in (4) by letting s(z) be the

Koebe function, k(z)=z(l— z)~2. It follows from (3) that h(z) is of the

form z(l— zé")"1 if and only iff(z) = e~"f(ze"). Theorems 1 and 2 then

yield the following.

Theorem 3. Iff(z)eJia (O^a^l) and is not a rotation of fa(z),

then there exists e = s(/)>0 such that

f(z) e Him~*)+°   and   f'(z) eHm^Ue.

We remark that for 0<a<!2, fAz) $ /T17'2"*1 (//°° if a=2), although

Mz)eH\VX, X<ll(2-a).
We now wish to establish Theorem 3 for l<a^2. In this case/(z) is

both convex and starlike. These geometric properties give rise to the usual

Herglotz formulas, which in turn yield probability measures px and p2,

respectively. We can suppose these measures to be normalized so that

ft(0.      i
J—TT

Uplt + 0) + pit - 0)] = pit),        pit) dt = 0       (i = l, 2).
J—17

The normalization determines px and p2 uniquely; we shall call them the

convex and starlike measures associated with/(z), respectively.

Lemma 4. Let f(z) be an unbounded convex function and let px be the

convex measure associated with f(z). If the maximum jump of px(t) is

y, thenf(z) e H\ VX, ;.<l/(2y-l), andf'(z) e H\ VA, X<l/2y.

Proof. We first observe that since /(z) is unbounded, y_J [8, pp.

67-72]. The proof of Lemma 4 then follows from [3, p. 345].

Theorem 5. Let f(z) be an unbounded convex function. If the maximum

jump of px(t) is y then the maximum jump in p2(t) is y — \.

Proof. Since/(z) is convex, either (a)/(z) is continuous on D with

the exception of one point, say z0, and at this point,/(z)^-go as z~^z0 with

|z|<l, |z-01 = 1, or (b)f(D) is a domain whose boundary is two parallel

lines [8]. In case (b), the result of Theorem 5 is obvious; hence, we assume

case (a). We also assume that the maximum jump, y, in px(t) occurs at

Z=0. It follows by the continuity remark in (a) that the maximum jump in

p2(t), call it ß, also occurs at 7=0.
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First, suppose y—\<ß. It is well known (see e.g. [12]) that f(D)

contains a sector of vertex angle 2Trß. Hence, for some constant C,

C((l+z)/(l-z))2"</(z),       zeD.

Thus, j^ |/(z)|1/2" dd becomes unbounded as r tends to 1, contradicting

Lemma 4 (since 2y — l<2ß).

We now suppose ß<y—\- Choosing ô such that /3<c3<y — i, a result

of Pommerenke [9] gives

M(r,f) = 0((l - r)-2S).

The Cauchy formula yields

M(r,f) = 0((1 - r)-25"1).

On the other hand, since zf'(z) is starlike

|z/'(z)| = £|z|/|l-z|2>,

where £is a constant [9]. But this contradicts the fact that 2ô+l<2y.

The result follows.

Theorem 6. Iff(z) £ °dt* (0_a<2) and is not a rotation of'/(z), then

there exists e = e(f)>0 such that

f(z) e H1/(2-x)+E   and   f'(z)eHin3-*)+e.

Iff(z) £ Jt2 is unbounded, thenf(z) is a rotation off2(z).

Proof. By Theorem 3, we may assume <x>l. We also take/(z)

unbounded. Let px and j"2 be as in Theorem 5. Since f(z) e JÍ^ p =

(1 — c/.)p2 + a.px is a measure on [—77,77]. If y denotes the maximum jump

in px, then the maximum jump in p2 occurs at the same point and equak

y — \. Thus, the maximum jump in p is y + \(u.— l). The rotations of

fzfz) are given by equating this number with unity; i.e., by setting

y = \(3-E).
Thus, let us assume \^.y<,\(3 — a). We observe that if ¡x=2 then

7 = -|, and consequently there is only one unbounded function in j$¿2

(up to rotations).2

By Lemma 4, f'(z)eHx (X<l¡2y). Since l/2y>l/(3-a) we may

choose e = e(/)>0 so that l/2y>l/(3-a) + e. Hence, f'(z) e Hin3~x)+\

and, for perhaps a different e,/(z) E H1/{2-")+e.

2  M. O. Reade has pointed out to the authors that this result is also obtained by

considering g(z) = V(f(^)), which is odd and convex, whenever/(z) e„#2.
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