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ORDER  SUMMABILITY  AND ALMOST CONVERGENCE

HOWARD  T.   BELL

Abstract. The object of this paper is to compare the summa-

bility methods of almost convergence and order summability. This

is done by examining a method of summability which includes both

methods. The main result is that every monotone Fourier effective

matrix is strongly regular.

Introduction. In this paper a general, nonmatrix method of summa-

bility is introduced which not only includes matrix summability but also

includes the order summability of Jurkat and Peyerimhoff [2] and the

method of almost convergence of G. G. Lorentz [5]. Some general theorems

about this method are given and they are used to examine the relationship

between the two methods mentioned above and the relationship between

almost convergence and Fourier effectiveness. We are able to show that

every monotone Fourier effective matrix is strongly regular.

In §1, we define the method and give some examples. The study of the

mapping properties of this method comprise §2. As applications of this

method, comparison theorems between order summability and almost

convergence are proved in §3.

1. Definitions and examples. For v = l, 2, ■ ■ ■, let Av=(alnk) be an

infinite matrix of complex (or real) numbers. Let sé denote the sequence

of matrices {Av}. For a sequence of complex (or real) numbers, x={xn),

the double sequence / = {/£}, defined by C=2£Li avnkxk is called the {Av}

or ¿/-transform of x whenever the series converges for all « and v. A

sequence x is said to be {Av} or j</-summable to some number L if {fn}

converges to L as zz tends to oo uniformly for v= 1, 2, • ■ • . F is said to be

the ¿/-limit of x, written lim^ x=L or séx^-L, and we say séx is con-

vergent to L.

Also, let cs/ be the set of all sequences whose ¿/-transform is convergent.

sé is said to be a regular sequence of matrices if x—*L implies séx-^-L.

We shall denote the set of null sequences by zz and the bounded sequences

by zzz.
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We shall now consider some examples. Clearly if, for some matrix £,

Al=B for v=l, 2, ■ ■ ■ , then {yT}-sum m ability is just matrix summability

by B.
Next, consider the sequence of matrices, .<F={FV), with Fv=(d°nk)

where avnk=l/n if v^k<n + v and is 0 otherwise. Then a sequence x is 3E-

summable to £ if (££)„= (1/«) YjZT1 xk converges to L as «-»-co uni-

formly for v=l ,2, • • ■ , that is, if x is almost convergent (see [5]) to £.

Thus c3¡r=f, the space of almost convergent sequences. Lorentz in [5]

has shown that/is not the bounded convergence domain of any regular

matrix, but we see that it is the convergence domain of a regular sequence

of matrices. In §2, we will try to show how this facilitates the study of

almost convergence.

In [5], Lorentz considers ^-summability and in [6], Mazhar and

Siddiqi consider /fyrsummability. Both methods are easily seen to be

special cases of ¿/-summability for appropriately chosen sé.

In [2], Jurkat and Peyerimhoff define order summability [g]. For g(t),

defined on [0, 1) with g(t)^0, a sequence x={x„} is said to be order

summable [g] to L if

n + 1 -mv±;n \ \n + ill

as «—*oo uniformly for O^m^n.

Let (S={GV] with C7"' = (iC) where for each n, m<n,

aZ= 1/(1 + g(ml(n+l)))(n + 1 - m)

for m^v^n and is zero elsewhere in the «th row (note that this completely

defines G°) and when «<«/, the nth row of Gm is the «th row of G°. Then

á?-summability is equivalent to order summability [g].

When dealing with order summability, indices will start at 0 instead of 1.

Also, the sums throughout this paper will be taken from k= 1 to oo unless

otherwise noted.

2. General theorems. The following notion enables us to reduce some

questions on ¿/-summability to similar questions on matrix summability.

Theorem 1. c^=f] {cv:U e &} where °l¿ is the family of all matrices

whose «th row is the nth row of Av for some v.

Proof. Let U e °l¿. The «th row of U is the «th row of Ä" for some v.

For that «, we shall denote such a v by vn. Thus, for each U e <% we

associate a sequence of positive integers {vn} where u,lk=av,¡k for all « and k.

Now, suppose x e csJ. Then surely 2 an'kxk converges as «—>-co since

2 avnlc xk converges uniformly for v=\, 2, • • • as n—>-co. On the other hand,
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suppose x^Cjj. Then, for any L and e>0, there is an infinite set of

integers, J, such that for each neJ, there is an integer wn such that

12 flïî xk— L\>e for all neJ. Let vn = wn for zz eJ and let vn=l for zz $J.

If U is the matrix associated with the sequence {vn}, then U e °U but Ux

does not converge. Hence, if x $ c^, then there is a U etft with x $ cv.

The consistency of all the 17ef and ¿/ also follows from this assertion.

For if the t/-limit of x differed from the F-limit of x for some U, V e <%l,

we could construct a matrix W e <% by alternating the rows of U and V,

where the IF-limit of x would not exist. Hence, as corollaries, we have that

sé is regular (resp., conservative, coercive, strongly regular, etc.) if and

only if each U efy is regular (resp., conservative, coercive, strongly

regular, etc.).

The proofs of the following three theorems are omitted. (Complete

proofs can be found in [1].) The proof of each of the theorems follows the

same pattern. Suppose we wish to show that sé is, say, regular if and

only if (a), (b) and (c) hold. The classical "Silverman-Toeplitz" theorem

tells us that U is regular if and only if (i), (ii) and (iii) hold for U. Thus the

proof reduces to showing (a), (b) and (c) hold if and only if (i), (ii) and

(iii) hold for every C/ef.

Theorem 2.    A sequence of matrices sé={Av} is regular if and only if

(a) for each k = 1, 2, • • ■ , limre^œ avnk — 0 uniformly for v—1,2, • • • ;

(b) lim„_>œ 2 ani-=l uniformly for v=l, 2, • • • ;

(c) for each n, t>=l, 2, • • ■ , 2 I^K00» and there exists integers N,

M such that 2 I a«* I < M for n^.N and all v= 1, 2, • ■ •.

A sequence of matrices sé (or a matrix A) is called strongly regular if,

whenever a sequence x is almost convergent to L, then sex (or Ax)

converges to L. We have the following analog to the characterization of

strongly regular matrices given by Lorentz [5].

Theorem 3. A regular sequence of matrices sé={A"} is strongly regular

if and only if lixnn^x 2 \al.k+i-al,k\=0 uniformly for v=l, 2, ■ • •.

Theorem 4. A sequence of matrices ¿!§={BV} maps m to n, that is, the

¿^-transform of every bounded sequence converges to 0 if and only if

2 l^nzcl—^D as n—+co uniformly for v= 1, 2, • • • .

By the following two examples, we try to establish the advantage of

considering almost convergence as a special case of a more general

situation. A matrix A is almost regular if, whenever x—>L then Ax is

almost convergent to L. Now Ax is almost convergent to L if and only

if the {FM}-transform of x converges to L. Thus, A is almost regular if

and only if {FVA} is regular. Thus, the characterization of almost regular
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by King [4] follows immediately from Theorem 2. The same approach

can be applied to almost strongly regular matrices. If whenever x is almost

convergent to £, then Bx is called almost convergent to £, then £ is called

almost strongly regular. Thus B is such a matrix only if {FVB} is strongly

regular. Applying Theorem 3, we obtain the characterization given by

Schaefer [7].

We are now able to deduce a useful theorem to determine when a

sequence of matrices is strongly regular. Let 5 denote the matrix with

1 on the super diagonal, i.e., S=(p„k) where pnn+1=l and is 0 elsewhere.

Also, / will denote the identity matrix.

Theorem 5. A regular sequence sé is strongly regular if and only if

@ = {BV), where BV=AV(S-I), maps m to n.

Proof. We first note that for any v, the «, kth entry in AVS, which we

shall denote by (AvS)nk is (Av)n¡k+1 or avn,k+1. Hence, we see that

2 \Kk\ = 2 k^s - A*)«*\ = 2 k.*+i - «u-

Applying Theorems 3 and 4 establishes the result.

3. Comparison theorems. In certain cases we are able to compare

order summability and almost convergence.

Theorem 6. Suppose g(t) is defined on [0,1) andg(t)~^.0. //"lim<^1g(i) =

oo, then order summability [g] is stronger than almost convergence, i.e.,

is strongly regular.

Proof. We first note that order summability [g] is regular and since

order summability [g] is ^-summability (see §1), we can apply Theorem 5.

Thus, we must show that if xem, then ((S—I)x)v = {xv+1 — xl) is (S-

summable or order summable [g] to 0. We first note that

n

/, (xv+x       xv) ««+i - xm\ s; 2||x||.

Let «>0 be given. Since \imt_>xg(t)=oo, we can choose ó, 0<o<-J

such that 1— mj(m+l)<.ô implies g(ml(n+l))>2\\x\\ls. Also, choose N

so that « = /V implies l/(«+l)ô<e/2||x||.

Then for «_A7 and Ogw_«, if 1—ó<«/(«+l) we have

1/(1 +g(ml(n+ l)))<e/2|M|

or if 1—o>m/(«+l), then

l/(« + 1 - m)< l/(« + l)o < e/2||x
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thus

m   \    n + 1 — m
7, xv+l       xv < e/2\\x\\ ■ 2\\x\\ = s

\n + F

fox n~>N and 0^w¿n.

Corollary 1.    Order summability [log(l/(l— t)] is strongly regular.

Corollary 2. Every monotone Fourier effective matrix is strongly

regular.

Proof. Jurkat and Peyerimhoff have shown in [2] that every monotone

Fourier effective method is stronger than order summability [log 1/(1—/)]

which is strongly regular by Corollary 1.

Similar theorems can be derived concerning more general functions g,

and almost convergence using the comparison theorems of Jurkat and

Peyerimhoff in [3].
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