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CYCLIC  ORDER AND  DISSECTION  ORDER
OF  CERTAIN  ARCS

S.   B.   JACKSON

Abstract. Let arc A in the conformai plane or on the sphere

have local cyclic order three and cyclic order /. It can be decomposed

into a finite number of subarcs of cyclic order three. Let the di-

section order of A be the minimum number of arcs in such a de-

composition. The principal result of this paper is that the cyclic

order / and dissection order d of A satisfy the relation d+2^t^3d.

In establishing this result it is proved that a necessary and sufficient

condition, that an arc of local cyclic order three shall be of global

cyclic order three, is that there exists a circle meeting it only at the

endpoints.

1. Introduction. Let arc A of the conformai plane or sphere have local

cyclic order three, i.e., let every point have a neighborhood on A meeting

any circle at most three times. A circle C containing a pointy e A is called

a general tangent circle to A at p if C=Iim C(q¡, rit P¡) where {cyj and

{/•J converge on A top, {PJ converges, and C(qt, ris Pt) denotes the unique

circle through the three points. If {P(} also converges on A to p, then C is

called a general osculating circle to A at p. Since A has cyclic order three

at each point p, the general tangent circles form a unique pencil of the

second kind with fundamental point p ([4], [9]). From the Heine-Borel

Theorem it follows that A has finite cyclic order. The following notation

will be used throughout the paper:

A is an arc of local cyclic order 3.

a, b are the endpoints of A.

A' = A\{a, b}, i.e. A' consists of the interior points of A.

t is the cyclic order of A.

K is the pencil of circles through points a, b.

The following result is known [6, Theorem 1].

Theorem A. The general osculating circles to arc A have the nesting

property.
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This means that if q, r, s are any three points of A and if Cq, Cr, Cs are

general osculating circles at those three points then Cr separates CQ and Cs

whenever r separates q and s on A. Actually this is a simple extension of a

known property of arcs of cyclic order three [5]. For a generalization of

these ideas see also [1, pp. 22-24], [2, Chapter 4.2] and [3, p. 9].

From Theorem A it follows at once that a general osculating circle to A

at a point/) in A' separates the endpoints and meets A only at p. For any

oriented circle C we use the notations C* and C* to denote the regions to

the left and right of C respectively. If the general osculating circles are

oriented in the usual way, it follows that either (1) a e C* and b e C*

or (2) a e C* and b e C* for all oriented general osculating circles at

points of A'. Arc A is called positive or negative according as condition (1)

or condition (2) holds. It may be noted that positive and negative arcs are

interchanged by inversion so it is usually sufficient to consider only one of

the two cases.

We proceed to develop criteria for the cyclic order t of arc A.

2. Criteria for cyclic order.

Lemma 1. Let K be any member of the pencil K for arc A. Then (1) if

p e A' (~\K arc A crosses K at p and K is not a general tangent circle at p,

and (2) the points of A in A' C\K alternate between the arcs of K determined

by a, b.

Proof. If C is a general osculating circle atp it was noted above that

C separates a and b. It follows that no circle tangent to C contains both a

and b. Thus K cannot belong to the general tangent pencil at p and A

must cross K. This proves assertion (1). To establish assertion (2) suppose

for definiteness that A is a positive arc. Let K be given an arbitrary orien-

tation and let Kx and K2 be, respectively, the arcs of K from a to b and

from b to a. If q e Á C\KX and if C is a general osculating circle at q then

by definition of positive arc a e C* and b e C*. Thus at q, Kx crosses from

C* to C*. This is equivalent to the statement that, at q, C, and hence A,

crosses from K* to K*. Thus at all points of A' dKx arc A crosses K from

K* to A'*. A precisely similar argument shows that at all points of A' C\K2

arc A crosses K from K* to K#. Since the crossings of A with K must

alternate between crossings from K* to A'* and crossings from K* to K+

it follows that the points of A' nK must alternate between arcs Kx and K2.

This establishes assertion (2).

Lemma 2.    There exists a circle of pencil K meeting A in t points.

Proof. By definition of cyclic order there is a circle C meeting A in t

points qx, ■ ■ ■ ,qt. lïqx = a, qt = b, circle C is already the desired circle in K.
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If qx^a, let M be the circle through a, qx, qt. Hence M separates the two

arcs of C from qx to qt. By Lemma 1 applied to the subarc qxqt of A the

points q2, q3, ■ • ■ , qt_x alternate between these arcs. Hence each of the

/ —3 subarcs of A, qiqi+x, i=2, ■ ■ ■ , / —2, meets M. Thus Mc\A includes

these /—3 intersections together with a, qx, qt, so M is a circle which meets

A in / points and contains endpoint a. Xfq^b an exactly similar argument

replaces M by a circle N containing both a and b and meeting A in / points.

Circle N is then the desired member of K.

Lemma 3. Let R, S be members of pencil K meeting A in r, s points

respectively. Then \r—s\^l.

Proof. We may assume without loss of generality that r^is. Let the

points of A C\R be a, qx, ■ ■ ■ , qT^2, b. By Lemma 1 the points qt alternate

between the arcs of R from a to b. But since 5 separates these two arcs, 5

must meet each of the r—3 subarcs of A, q¡qi+x, i=\, • • • , r — 3. Thus

A C\S contains at least a, b, and these r — 3 intersections. That is, s^.r—1.

Since we have assumed r^.s this means that \r—s\=r—s<l.

Theorem 1. If circle C is a member of pencil K and is a general tangent

circle at a or b, then Ä C\C contains exactly / —3 points.

Proof. Let s be the number of points in A'C\C, whence the number

of points in Af\C is s+2. It is known [6, Theorem 1.1] that if a circle

meets an arc of cyclic order / in / points, it cannot be a general tangent

circle at any of them. Hence A C\C cannot contain as many as / points and

s+2<t. But by Lemma 3, / —(i+2)^l. These two inequalities imply

s=t — 3 which was to be proved. An alternate proof of Theorem 1 could

be given along the following lines. Let A' be a member of K meeting A in

a, qx, ■ ■ ■ , qt_2, b as guaranteed by Lemma 2. Because of Lemma 1, if a

variable circle starts from Kand varies monotonically in Ä"the intersections

q¿ all vary in the same direction on A. If the variation is chosen so the qt

are displaced toward a it can be continued until qx reaches a in which case

the circle is a general tangent circle at a and meets A' in / —3 points.

Similarly if the variation displaces the qt toward b it continues until qt_2

reaches b, yielding the general tangent circle at b. Actually these two

tangent circles divide pencil K'mto two segments such that all circles in one

segment meet Amt points while all circles in the other segment meet it in

t— 1 points. This latter segment may consist of a single circle, however.

The following result is a simple but useful corollary.

Theorem 2. A necessary and sufficient condition that A have cyclic

order three is that there exist a circle K e K meeting A only at a, b.
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Proof. If the cyclic order of A is three, the circle C of Theorem 1

satisfies the required condition since t — 3=0. Conversely, suppose A'is a

circle meeting A only at endpoints a, b. By Lemma 2 there is a circle L

through the endpoints meeting A in t points where t is the cyclic order. By

Lemma 3 applied to K and L, we find \t—2|_1 whence r = 3. It follows

that f=3 since the cyclic order is never less than three.

3. Dissection order.

Definition. The dissection order of the arc A is the minimum number

of arcs of cyclic order three into which it can be decomposed.

Theorem 3.    If the arc A has dissection order d, then d+2^t^3d.

Proof. By hypothesis, A can be decomposed into d arcs, each of cyclic

order three. Since no circle can meet any of these c/arcs in more than three

points, no circle can meet A in more than 3d points. Thus r = 3c/, and the

right-hand inequality in the theorem holds.

Consider now the circle C of pencil K which belongs to the tangent

pencil to A at a. By Theorem 1, A'C\C contains exactly t — 3 points, say

qx, q2, ■ ■ ■ , qt_3. Thus C cuts A into the t — 2 subarcs aqx, qxq2, • • • , qt-3b.

Since C meets each of these subarcs only at its endpoints, it follows by

Theorem 2 that these arcs are all of cyclic order three. Thus A has been

divided into t — 2 arcs, each of cyclic order three. This means that, by

definition of dissection order, d^t—2. This is equivalent to the left-hand

inequality in this theorem.

It is natural to ask whether the result of Theorem 3 is, in some sense, a

best possible one. The answer is in the affirmative. If d and / are any positive

integers satisfying the inequalities of Theorem 3, there exists an arc A of

local cyclic order three having cyclic order t and dissection order d. The

proof of this, however, requires more machinery than has been developed

here.
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