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ON A NONLINEAR STOCHASTIC INTEGRAL EQUATION
OF THE HAMMERSTEIN TYPE

W. J. PADGETT

ABSTRACT. A nonlinear stochastic integral equation of the
Hammerstein type in the form

x(t; w) = h(t; w) + f k(t, s; 0)f (s, x(s; w)) du(s)
S

is studied where 7 € S, a o-finite measure space with certain prop-
erties, w € Q, the supporting set of a probability measure space
(Q, A4, P), and the integral is a Bochner integral. A random solu-
tion of the equation is defined to be a second order vector-valued
stochastic process x(¢; ) on S which satisfies the equation almost
certainly. Using certain spaces of functions, which are spaces of
second order vector-valued stochastic processes on S, and fixed
point theory, several theorems are proved which give conditions
such that a unique random solution exists.

1. Introduction. The purpose of this note is to study the existence and
uniqueness of a random solution of a nonlinear stochastic integral equation
of the Hammerstein type of the form

A x5 @) = b 0) + [ K55 0105, 3055 ) ducs),
where s
(i) S is a locally compact metric space with metric d defined on SX S
and u is a complete o-finite measure defined on the collection of Borel
subsets of S;
(i) w € Q, where Q is the supporting set of the probability measure
space (2, 4, P);
(iii) x(¢; w) is the unknown vector-valued random variable foreacht € S;
(iv) A(¢; w) is the stochastic free term defined for ¢ € S;
(v) k(t, s; w) is the stochastic kernel defined for ¢ and s in S; and
(vi) f(¢, x) is a vector-valued function of # € S and x.
The integral in equation (1.1) is interpreted as a Bochner integral [12].
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Further assumptions concerning the functions in (1.1) will be stated in §2.
The equation (1.1) is a generalization of stochastic integral equations
studied by Padgett and Tsokos [9], Tsokos [11], and Anderson [1]. Also,
equation (1.1) is a stochastic version of the deterministic integral equations
which were investigated by Petryshyn and Fitzpatrick [10], Browder and
Gupta [5], Browder, de Figueiredo, and Gupta [6], among others.

In order to investigate the stochastic integral equation (1.1), we will
define several spaces of functions which are spaces of second order
vector-valued stochastic processes on S and will use certain aspects of the
“theory of admissibility”” of Banach spaces as introduced into the study
of integral equations by Corduneanu [7] and the methods of “probabilistic
functional analysis™ [3].

2. Preliminaries. We will further assume that S is the union of a
countable family of compact subsets {C,} having the properties that
C,=C,=Cs< - - - and that for any other compact set in S there is a
C, which contains it [2].

We define C=C(S, L,(Q, 4, P)) to be the space of all continuous
functions from S into the space L,(2, A, P) with the topology of uniform
convergence on compacta. That is, for each fixed t € S, x(¢; w) is a vector-
valued random variable such that

Ix(t; ) Z,0.4.p) =L|X(t; )| dP(w) < oo.

It may be noted that C(S, Ly(2, 4, P)) is a locally convex space [12,
pp- 24-26] whose topology is defined by the countable family of semi-
norms given by

Ix(t; w)ll, = sup lIx(¢; w)anm,A,p), n=1,2,-"-.
teC,
Moreover, C(S, L,(L2, A, P)) is complete relative to this topology since
L,(Q, A, P) is complete.

We further define BC=BC(S, Ly,(Q, A, P)) to be the Banach space of
all bounded continuous functions from S into L,(Q2, 4, P) with norm

x(t; @) pc = sup Ix(t; )l £, 0,4.p)-
teS

The space BC < C is the space of all second order vector-valued stochastic
processes defined on S which are bounded and continuous in mean-square.

We will consider the functions A(t; w) and f(¢, x(t; w)) to be in the
space C(S, L,(2, 4, P)). With respect to the stochastic kernel we assume
that for each pair (¢, s), k(z, 5; w) € L ,(Q, A, P) and denote the norm by

llk(, 53 o)l = Ik (t, 55 L 0.4.p) = P-ess sup k(z, 55 w)I.
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Also, we will suppose that k(¢, s; w) is such that
llk(t, 55 )l - 1x(s; @)llz,i0.4.P)

is u-integrable with respect to s for each re€S and x(s; w) in
C(S, L,(Q, A, P)), and that there exists a real-valued function G defined
p-a.e. on S so that G(s) | x(s; @)l ,ca.4,p) is u-integrable and, for each
pair (¢, s) € SXS,

k(t, u; @) — k(s, us w)ll - Ix(u; w)“Lz(Q,A,P) = G(u)llx(u; w)"Lz(Q.A,P)

p-a.e. Further, for almost all s€ S, k(¢, s; w) will be continuous in ¢
from S into L, (Q, 4, P).
We now define the integral operator T on C(S, L,(2, 4, P)) by

2.0 (Tx)(t; w) =Lk(t, s; w)x(s; w) du(s),

where the integral is a Bochner integral. From the conditions on k(¢, s; w),
we have that for each 1 € S, (Tx)(¢; w) € Ly(Q, 4, P) and that (Tx)(¢; w)
is continuous in mean square by Lebesgue’s dominated convergence
theorem. That is, (Tx)(t; w) € C(S, Ly(Q, A, P)).

LEMMA 2.1.  The linear operator T defined by equation (2.1) is continuous
Jrom C(S, Ly(Q, A, P)) into itself.

Proor. Note that C(S, L,(2, 4, P)) is a Fréchet space with metric d*
defined by the Fréchet combination of the sequence of seminorms ||,
n=1,2,---.

Define the sequence of linear operators {T'y,}, M=1,2,---, by

(Tyx)(t; w) =fc k(t, s; w)x(s; w) du(s).

Hence, as M—o00 we have (T;;x)(t; 0)—(Tx)(t; o).
Let {x;(t; w)} be a sequence of functions converging to x(¢; ) in
C(S, Ly(Q, A, P)). Then by definition of the seminorms, for each M

I(Tarx)(t; @) — (Tarx)(t; o),
= sup f k(2,55 @)l - 1x(s; @) — x,(s; w)”L,m.A,P) du(s).

teC,

Since [ x(s; w)—x;(s; ®)|| 1,q,4,,»—0 uniformly on the compact set C,,,
for >0 there exists a positive integer N, such that j=N,, implies

I(Tag)(t; ) — (Tagx,)(t; )l < & sup fc kCt, 5: )| ducs).

teC,
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Now, by the conditions on k(t, s; w), there exists a constant K, such
that [|k(¢, s; o|| K, for all € C, and almost all s. Hence, for j=N,,

I(Tarx)(t; @) — (Tarx;)t; @)l < eKpp(Cpg)-

Since convergence in every seminorm is equivalent to convergence in
the metric d*, (T;x,)(¢; ) converges to (T,x)(¢; w) in C(S, L,(Q, 4, P))
for each M. Therefore, by [8, p. 54], T'is continuous from C(S, L(2, 4, P))
into itself.

Let B and D be Banach spaces. The pair (B, D) is said to be admissible
with respect to a linear operator T if T(B)< D.

LEMMA 2.2.  If T is a continuous linear operator from C(S, Ly(Q, A, P))
into itself and B, D<= C(S, Ly(Q2, A, P)) are Banach spaces stronger than
C(S, Ly(Q, A, P)) such that (B, D) is admissible with respect to T, then T
is continuous from B into D.

The lemma follows from the closed-graph theorem.

From Lemmas 2.1 and 2.2 it follows that 7" defined by equation (2.1),
is a bounded linear operator from B into D.

By a random solution of the equation (1.1) we will mean a function
x(t; w) in C(S, Ly(Q, A, P)) which satisfies the equation P-a.e.

3. Existence of a random solution. We now present theorems con-
cerning the existence and uniqueness of a random solution of the equation

(1.1).

THEOREM 3.1.  We consider the stochastic integral equation (1.1) subject
to the following conditions:

(i) B and D are Banach spaces stronger than C(S, Ly(Q, A, P)) such
that (B, D) is admissible with respect to the integral operator defined by
equation (2.1);

(il) x(t; w)—f(t, x(t; w)) is an operator from the set

0(p) = {x(1; w):x(t; w) € D, | x(t; w)lp = p}
into the space B satisfying the Lipschitz condition
If @, x(t; @) — &, y(t; @)l = A 1x(t5 @) — y(t; 0)lp

Jor x(t; w), y(t; w) € Q(p), where p and A are constants;
(iii) A(t; w) € D.
Then there exists a unique random solution of (1.1) in Q(p), provided
AK<1 and
IA(t; )llp + K1, 0)lp = p(1 — 2K),

where K is the norm of T.
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ProoF. Define the operator U from Q(p) into D by

(Ux)(t; w) = h(t; w) +fk(t, s; w) f(s, x(s; w)) du(s).
s
Then from the conditions of the theorem

1(UX)(#; w)llp = 1At @)lp + K1, x5 0))lp
= 1@ o)lp + K1 f (¢ 0l + K2 x(t; 0)lp = p.

Hence, (Ux)(t; w) € Q(p). ‘
Now, for x(¢; w), y(t; w) € O(p) we have by condition (ii) that

I(Ux)(t; w) — (Uy)t; o)llp
- “L k(t, s; 0)[f(s, x(s; w)) — f(s, y(s; w))] du(s)

= K| f(t, x(t; w)) — f(1, y(t; 0)p
= AK |[x(t; w) — y(t; »)lp.

Since AK<1, U is a contraction on Q(p).

Therefore, by Banach’s fixed point theorem there exists a unique
x*(t; w) € Q(p) which is a fixed point of U, that is, x*(¢; w) is the unique
random solution of equation (1.1).

A similar theorem may be obtained when f is a nonlinear contraction

on Q(p) [4].

THEOREM 3.2. Assume that the stochastic integral equation (1.1)
satisfies the following conditions:
(1) same as Theorem 3.1(i);
(i) x(¢; w)—f (t, x(t; w)) is an operator from the set Q(p) into the space
B satisfying

I/ @, x(t; w)) = [, y(t; oPlp = $lx(1; w) — y(; ©)lp)

Sfor x(t; w), y(t; w) € Q(p), where ¢ is a real-valued continuous function
such that ¢(s)<s for s>0;

(iii) A(t; w) € D.
Then there exists a unique random solution of (1.1) in Q(p), provided
K=1 and |h(t; o)l p+K (¢, 0l z=p(1—K), where K is the norm of T.

D

The proof of Theorem 3.2 is similar to that of Theorem 3.1 except that
the fixed point theorem of Boyd and Wong [4] is used.
The following is a useful application of Theorem 3.1.
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CoROLLARY 3.1.  Suppose the stochastic integral equation (1.1) satisfies
the following conditions:

(i) supes fs lIk(, 55 )l du(s)< oo;

(i) f(¢, x) is a continuous function of t € S uniformly in x such that for
Ix(7; @)z, 1y(t; @)lpc=p

If (2, x(t5 @)) — f (2, y(t; ODl|Lya.a.p) = Alx(; @) — y(t; 0)|Ly0.4.P)

Jfor each t € S, where A and p are constants;
(iii) A(t; w) is a bounded continuous function from S into L,(Q, A, P).
Then there exists a unique random solution of equation (1.1), provided
supqes s (2, s; )l du(s), 2, and || f (¢, 0)|| gc are sufficiently small.

Proor. We must show that condition (i) implies that the pair (BC, BC)
is admissible with respect to the integral operator T defined by equation
(2.1). Let x(t; w) € BC(S, Ly(Q2, A, P)). Then by the properties of the
Bochner integral

I(Tx)(t; D) Lye.a.p = L” k(t, s; w)x(s; w)ll L @,4.p) du(s)
= sup [[x(z; w)"Lz(Q.A.P)f lik(t, 55 )lll duu(s)
teS s

< 165 @l sup [ Ik 55 )] i),
teS JS

Hence, (Tx)(t; w) € BC(S, Ly(Q, 4, P)), that is, (BC, BC) is admissible
with respect to T.

Conditions (ii)-(iii) clearly imply that conditions (ii)-(iii) of Theorem
3.1 hold. Thus, by Theorem 3.1, there exists a unique random solution of
equation (1.1).

Other corollaries of Theorems 3.1 and 3.2 may be obtained by choosing
different Banach spaces contained in the space C(S, L,(Q, 4, P)) and
different conditions on f and k.
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