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ON A NONLINEAR  STOCHASTIC INTEGRAL EQUATION
OF  THE  HAMMERSTEIN  TYPE

W.   J.   PADGETT

Abstract.    A nonlinear stochastic integral  equation  of the

Hammerstein type in the form

x(t; co) = h(t; co) +     k(t, s; co)f(s, x(s; cu)) dp(s)
•I s

is studied where t e S, a cr-finite measure space with certain prop-

erties, co e fl, the supporting set of a probability measure space

(fi, A, P), and the integral is a Bochner integral. A random solu-

tion of the equation is defined to be a second order vector-valued

stochastic process x(t; co) on S which satisfies the equation almost

certainly. Using certain spaces of functions, which are spaces of

second order vector-valued stochastic processes on S, and fixed

point theory, several theorems are proved which give conditions

such that a unique random solution exists.

1. Introduction. The purpose of this note is to study the existence and

uniqueness of a random solution of a nonlinear stochastic integral equation

of the Hammerstein type of the form

(1.1) x(t; co) = h(t; co) +    k(t, s; co)f(s, x(s; co)) dp(s),
Js

where

(i) 5 is a locally compact metric space with metric d defined on Sx S

and p is a complete cr-finite measure defined on the collection of Borel

subsets of S;

(ii) co e í¿, where Q. is the supporting set of the probability measure

space (D., A, P);

(iii) x(t ; &>) is the unknown vector-valued random variable for each t e S;

(iv) h(t; co) is the stochastic free term defined for t e S;

(v) k(t, s; co) is the stochastic kernel defined for t and s in S; and

(vi) f(t, x) is a vector-valued function of t e S and x.

The integral in equation (1.1) is interpreted as a Bochner integral [12].
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Further assumptions concerning the functions in (1.1) will be stated in §2.

The equation (1.1) is a generalization of stochastic integral equations

studied by Padgett and Tsokos [9], Tsokos [11], and Anderson [1]. Also,

equation (1.1) is a stochastic version of the deterministic integral equations

which were investigated by Petryshyn and Fitzpatrick [10], Browder and

Gupta [5], Browder, de Figueiredo, and Gupta [6], among others.

In order to investigate the stochastic integral equation (1.1), we will

define several spaces of functions which are spaces of second order

vector-valued stochastic processes on S and will use certain aspects of the

"theory of admissibility" of Banach spaces as introduced into the study

of integral equations by Corduneanu [7] and the methods of "probabilistic

functional analysis" [3].

2. Preliminaries. We will further assume that S is the union of a

countable family of compact subsets {Cn} having the properties that

CicC2cQc: " ' ' and that for any other compact set in S there is a

C, which contains it [2].

We define C=C(S, L2(Q, A,P)) to be the space of all continuous

functions from 5 into the space L2(0, A, P) with the topology of uniform

convergence on compacta. That is, for each fixed / e S, x(t; œ) is a vector-

valued random variable such that

\x(t; o)\\L<n,A.p) — \x(t;oj)\2 dP(co) < oo.

It may be noted that C(S, L2(Q, A,P)) is a locally convex space [12,

pp. 24-26] whose topology is defined by the countable family of semi-

norms given by

\\x(f, a>)\\„ = sup ||x(Z; w)\\L {a,A_P),       n = 1, 2, • • • .
tec„

Moreover, C(S, L2(í¿, A,P)) is complete relative to this topology since

L2(Q, A, P) is complete.

We further define BC=BC(S, L2(0, A,P)) to be the Banach space of

all bounded continuous functions from S into L2(Q, A, P) with norm

!l*(i; v>)\\bc = SUP IW'; M)\\Ljn.A.p)-

The space BC^C is the space of all second order vector-valued stochastic

processes defined on S which are bounded and continuous in mean-square.

We will consider the functions h(t;co) and /(/, x(t; to)) to be in the

space C(S, L2(Q, A, P)). With respect to the stochastic kernel we assume

that for each pair (/, s), k(t, s; m) e Lœ(D., A,P) and denote the norm by

\\\k(t, s; oj)\\\ = \\k(t, s; (o)\\Lta(n,A,P) = P-ess sup \k(t, s; to)\.
meCi
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Also, we will suppose that k(t, s; co) is such that

\\\k(t, s; co)\\\ • \\x(s; co)\\L2(q.a.p)

is /¿-integrable with respect to s for each t e S and x(s; co) in

C(S, L2(D., A,P)), and that there exists a real-valued function G defined

p-a.e. on S so that G(s) \\x(s; co)\\L^nAP) is /¿-integrable and, for each

pair (t, s)e SxS,

\\\k(t, u; co) - k(s, u; co)\\\ ■ \\x(u; co)\\Li[(lAP) < G(u)\\x(u; co)\\Li(nA:P)

p-a.e. Further, for almost all s e S, k(t, s; co) will be continuous in t

from S into LX(D.,A,P).

We now define the integral operator T on C(S, L2(Q., A, P)) by

-ÍJ(2.1) (Tx)(t; co) =    k(t, s; co)x(s; co) dp(s),
Js

where the integral is a Bochner integral. From the conditions on k(t, s; co),

we have that for each t e S, (Tx)(t; co) e L2(£i, A, P) and that (Tx)(t; co)

is continuous in mean square by Lebesgue's dominated convergence

theorem. That is, (Tx)(t; co) e C(S, L2(Q, A,P)).

Lemma 2.1. The linear operator T defined by equation (2.1) is continuous

from C(S, L2(Q, A, P)) into itself.

Proof. Note that C(S, L2(Q, A, P)) is a Fréchet space with metric d*

defined by the Fréchet combination of the sequence of seminorms ||-||„,

«=1,2,-- • .
Define the sequence of linear operators {TM}, M=\, 2, • • • , by

f
(TMx)(t; co) =       k(t, s; co)x(s; co) dp,(s).

JCm

Hence, as M-^-oo we have (TMx)(t; co)^*(Tx)(t; co).

Let {xj(t; co)} be a sequence of functions converging to x(t; co) in

C(S, L2(Çi, A,P)). Then by definition of the seminorms, for each M

\\(TMx)(t; co) - (TMXj)(t; co)\\n

^ sup        \\\k(t, s; co)\\\ ■ \\x(s; co) - xfa; m)\\L{sl^r) dp(s).
ttc„ JcM

Since \\x(s; co) — Xj(s; co)||¿2{nj4,p)^-0 uniformly on the compact set CM,

for £>0 there exists a positive integer NM such that f^.NM implies

||(r3/x)(/; co) - (TMXj)(t; o>)||B < e sup        \\\k(t, s; co)\\\ dp(s).
teC„ JCm
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Now, by the conditions on k(t, s; co), there exists a constant Kn such

that |||rV(/, s; co\\\^Kn for all / e Cn and almost all s. Hence, for j^NM

\\(TMx)(t; m) - (TMx,)(t; w)\\n < sKn/j,(CM).

Since convergence in every seminorm is equivalent to convergence in

the metric d*, (TMx¡)(t; co) converges to (TMx)(t; co) in C(S, L2(Q, A,P))

for each M. Therefore, by [8, p. 54], ris continuous from C(S,L2(Ci, A,P))

into itself.

Let B and D be Banach spaces. The pair (B, D) is said to be admissible

with respect to a linear operator 7"if T(B)<^ D.

Lemma 2.2. IfTis a continuous linear operator from C(S, L2{Q., A, P))

into itself and B, D<^C(S, L2(Q, A,P)) are Banach spaces stronger than

C(S, L2(£l, A,P)) such that (B, D) is admissible with respect to T, then T

is continuous from B into D.

The lemma follows from the closed-graph theorem.

From Lemmas 2.1 and 2.2 it follows that T defined by equation (2.1)

is a bounded linear operator from B into D.

By a random solution of the equation (1.1) we will mean a function

x(t; co) in C(S, L2(Q., A, P)) which satisfies the equation P-a.e.

3. Existence of a random solution. We now present theorems con-

cerning the existence and uniqueness of a random solution of the equation

(1.1).

Theorem 3.1. We consider the stochastic integral equation (1.1) subject

to the following conditions:

(i) B and D are Banach spaces stronger than C(S, L2{D., A, P)) such

that (B, D) is admissible with respect to the integral operator defined by

equation (2.1);

(ii) x(t; co)—*-/"(/, x(t; co)) is an operator from the set

Q{P) = {x(t; œ):x(t; co) e D, \\x(t; w)\\D < P}

into the space B satisfying the Lipschitz condition

\\f(t,x(t; co)) -f(t,y(t; œ))\\B ^ I \\x(t; co) - y(t; co)\\D

for x(t; to), y(t; co) G Q(p), where p and X are constants;

(iii) h(t; co) e D.

Then there exists a unique random solution of (1.1) in Q(p), provided

XK< 1 and

\\h(t;co)\\D + K\\f(t,0)\\B^p(l-XK),

where K is the norm of T.
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Proof.    Define the operator U from Q(p) into D by

{Ux)(t; co) = h(t; co) +    kit, s; co)f(s, x(s; co)) dp(s).
•Is

Then from the conditions of the theorem

\\(Ux)(t; co)\\D ̂  \\h(t; co)\\D + K \\f(t, x(t; co))\\B

^ \\h(t; co)\\D + K \\f(t, 0)||B + KÁ \\x(t; co)\\D ̂  p.

Hence, (Ux)(t; co) e Q(p).

Now, for x(t; co), y(t; co) e Q(p) we have by condition (ii) that

\\(Ux)(t;co)-(Uy)(t;co)\\D

f II
|   k(t, s; co)[f(s, x(s; co)) - f(s, y(s; co))] dp(s)\\

Js Wd

^ K \\f(t, x(t; co)) - f(t, y{t; co))\\B

^ ÀK \\x(t; co) — y(t; co)\\D.

Since XK<\, U is a contraction on Q(p).

Therefore, by Banach's fixed point theorem there exists a unique

x*(t; co) e Q(p) which is a fixed point of U, that is, x*(t ; co) is the unique

random solution of equation (1.1).

A similar theorem may be obtained when/is a nonlinear contraction

on Q(p) [4].

Theorem 3.2. Assume that the stochastic integral equation (1.1)

satisfies the following conditions:

(i) same as Theorem 3.1(i);

(ii) x(t; co)-»/(i, x(t; co)) is an operator from the set Q(p) into the space

B satisfying

\\f(t,x(t; co)) -f(t,y(t; co))\\B ̂  <f>(\\x(t; co) - y(t; co)\\D)

for x(t; co), y(t; co) e Q(p), where <¡> is a real-valued continuous function

such that (f>(s)<sfor i>0;
(íü)/z(í; co)e D.

Then there exists a unique random solution of (1.1) in Q(p), provided

K<:1 and \\h(t; co)\\D+K \\f(t, 0)\\B^p(l-K), where K is the norm of T.

The proof of Theorem 3.2 is similar to that of Theorem 3.1 except that

the fixed point theorem of Boyd and Wong [4] is used.

The following is a useful application of Theorem 3.1.O ff
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Corollary 3.1. Suppose the stochastic integral equation (1.1) satisfies

the following conditions:

(i) sup(aS ¡s \\\k(t, s; oj)\\\ d[i(s)<co;

(ii) /(/, x) is a continuous function of t e S uniformly in x such that for

\\x(t;oj)\\13C, ¡y(t; to)\\BC<p

\\f(t, x(t; co)) -f(t,y(t; o)))\\L^n.A.P) 1% X \\x(t; to) - y(t; <a)^a.A,P)

for each t e S, where X and p are constants;

(iii) h(t; to) is a bounded continuous function from S into L2(Q, A, P).

Then there exists a unique random solution of equation (1.1), provided

supieS fs \\\k(t, s; co)\\\ dp(s), X, and \\f(t, 0)\\BC are sufficiently small.

Proof. We must show that condition (i) implies that the pair (BC, BC)

is admissible with respect to the integral operator T defined by equation

(2.1). Let x(t; to) £ BC(S, L2(Q., A, P)). Then by the properties of the

Bochner integral

||(Tx)(f; eo)||£a(aXP) ^ J \\k(t, s; to)x(s; co)\\í¡fa AP) dfi(s)

<i sup \\x(t; to)\\L ,n,A,P)    \\\k(t, s; co)\\\ d¡u(s)
teS JS

< ||x(i; to)\\BC sup     P(/, s; co)\\\ d/¿(s).
teS   JS

Hence, {Tx)(t; w)eBC(S, L2(Q, A,P)), that is, (BC, BC) is admissible

with respect to T.

Conditions (ii)-(iii) clearly imply that conditions (ii)-(iii) of Theorem

3.1 hold. Thus, by Theorem 3.1, there exists a unique random solution of

equation (1.1).

Other corollaries of Theorems 3.1 and 3.2 may be obtained by choosing

different Banach spaces contained in the space C(S, L2(£l, A,P)) and

different conditions on /and k.
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