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Abstract. The midset of two distinct points a and b of a metric

space is defined as the set of all points x in the space for which the

distances ax and bx are equal. A metric space is said to have the

1-WLMP if the midset of each two distinct points is a convex 1-

sphere having the property that each nonmaximal (with respect to

inclusion) segment intersecting it twice lies in it. We show that a

nondegenerate compact space X is isometric to a 2-dimensional

spherical space S2 „ (a 2-dimensional sphere of radius a in euclidean

3-space with the "shorter arc" metric) if and only if X has a metric

with the 1-WLMP.

Berard ([1], [2]) has given characterizations of both the 1-sphere and

the 1-cell using conditions on the midsets of points in a metric space,

and Buseman [4] characterized euclidean, hyperbolic, and spherical

spaces among his (7-spaces using convex midset properties. We character-

ize 2-dimensional spherical space among nontrivial compact metric spaces

using a certain linear midset property described below.

The midset M(a, b) of two distinct points a and b of a metric space X

is the set of all points x in X for which the distances ax and bx axe equal.

A metric space X is said to have the weak linear midset property (WLMP)

if, for each two distinct points a and b of X, the midset Mia, b) contains

every nonmaximal segment (with respect to inclusion) that intersects it

twice. If in addition to having the WLMP each midset in A' is a convex

1-sphere we say that X has the 1-WLMP.

We prove that a nontrivial compact metric space X with the 1-WLMP

is isometric to a 2-dimensional spherical space. The proof of this result

is delayed until after a sequence of lemmas has been given. In each of

these lemmas it is to be understood that X is a nontrivial (nondegenerate)

compact metric space with the 1-WLMP. The symbol S(a, b) is used to

denote a metric segment with endpoints a and b, and the fact that q is

between the points/? and r (that is,p^q^r andpq+qr=pr) will be denoted

by writing pqr. A segment S is said to be maximal if it is not a proper

subset of another segment. In a compact convex metric space it is well

known that each two distinct points are the endpoints of at least one
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segment [3, p. 41], and it is easy to show that each segment lies in a

maximal one.

Lemma 1. If a and b are distinct points of X, then there exist points p

andq in M(a, b) and a segment S(a, b) in X such that S(a, b) lies in M(p, q).

In particular it follows that X is convex.

Proof. Let/denote a foot of a on M(a, b). Since M(a, b) is a convex

simple closed curve it contains two segments S(c,f) and S(d,f) whose

intersection is {/}. We may assume that ac^ad, and it follows that

af^ac^ad. If equality holds in one of these inequalities, then a and b

lie in a midset. This midset would contain a segment S(a, b) since it is

complete and convex. In the other case where af<ac<ad, the continuous

function ax, with x in S(f, d), assumes the value ac at some point q in

S(f d). If we let c=p, we have ap=aq=bq=bp, and we see that a and b

are in the midset of/? and q. As before, M(p, q) contains a segment S(a, b).

Lemma 2. If a and b are distinct points ofX and S(a, b) is a nonmaximal

segment, then S(a, b) is the unique segment in X having endpoints a and b.

Proof. Let S(a, b) and Sx(a, b) he two distinct segments, and suppose

that S(a, b) is properly contained in a segment S. We choose points x

and y in -S,(a, b) OS(a, b) such that the subsegments S[(x, y) and S'(x, y)

of Sx(a, b) and S(a, b), respectively, intersect only at their endpoints.

Let mx and m be the midpoints of S'x(x, y) and S'(x, y), respectively.

Clearly the midset M(mx, m) contains both x and y. Therefore it follows

from the WLMP that M(ntx, m) contains S'(x, y), which contradicts the

fact that «îjWtt^wîiW-

A point q is called a ramification point of a metric space X if there exist

pairwise distinct pointsp, r, and r' of Xsuch that q is a midpoint of p and r

and q is a midpoint of p and r'. If A' is compact and convex and if X has a

ramification point q, it follows that there exist two segments S(p, r) and

S(p, r') both having q as a midpoint [3, p. 44].

Lemma 3.    The space X has no ramification points.

Proof. Suppose that X has a ramification point q, and let S(p, r) and

S(p, r') he two distinct segments with q as their midpoint. Select points

x and y in the interiors of S(p, r) and S(p, r'), respectively, such that

qxr, qyr, and qx=qy. Now both p and q lie in M(x,y); hence it follows

from the WLMP that x and y belong to M(x, y). This contradiction

establishes the lemma.

Lemma 4. If a and b are distinct points of X, then M(a, b) separates

a from b in X. In fact, X—M(a, b)=A<uB, where A = {y e X\ay<by} and

£={}■' e \Xay>by}, is the desired separation.



600 L.   D.   LOVELAND  AND   J.   E.   VALENTINE [May

Lemma 5. If a and b are distinct points of X and u is a point in M(a, b),

then M(a, b) contains a point v and two maximal segments whose union is

M(a, b) and whose intersection is {u, v}.

Proof. Since M(a, b) is a simple closed curve it contains distinct

points u and t. Since M(a, b) is compact and convex, it contains a segment

S(u, t). Thus the partially ordered collection of all segments S(u, x)

(ordered by inclusion) with one endpoint w, containing S(u, t), and lying

in M(a, b) has a maximal element which we call Sx(u, v).

Letting {xA be a sequence of points in M(a, b) — Sx(u, v) converging

to v, we see that M(a, b) contains a segment S(u, xn) such that S(u, xn)

and Sx(u, v) have only the point u in common. A positive integer N exists

such that uxxxn holds for n>N; thus uxx+xxxn = uxn. By the continuity

of the metric it follows that uxxv holds, and since M(a, b) is compact and

convex, it contains two segments S(u, xx) and S(xx, v) whose union is a

segment S2(u,v) [3, p. 44]. It is clear that Sx(u,v)\jS2(u,v) = M(a,b)

since M(a, b) is a simple closed curve, and from the construction of

S2(u, v) we see that Sx(u, v)nS2(u, v) = {u, v}. If S2(u, v) were not maximal

it would follow from the WLMP that M(a, b) would contain a point e

such that either uve or vue holds, contrary to the fact that uev holds since

e would lie in Sx(u, v).

Definition. Let a and b be distinct points of X. The cone on M(a, b)

from a is the union of all segments S(a, y) where y lies in M (a, b).

Lemma 6. Let a andb be distinct points ofX. If for each point y in M(a, b)

there is a unique segment with endpoints a andy, then the cone on M(a, b)

from a is a 2-cell.

Proof. We first note that if x and y axe distinct points of M (a, b),

then S(a, x) and S(a, y) have only the point a in common. Otherwise X

would either contain a ramification point (contrary to Lemma 3) or the

WLMP would imply that a lies in M(a, b) (contrary to aa^ab).

Lét S denote the circle {(x, y, 0)| x2+y2= 1} in £3, and let/be a homeo-

morphism from M(a,b) onto 5. We denote f(y) by y', and we define

a'=f(a) to be the point (0, 0, 1) in F3. We extend/to a homeomorphism

from the cone C on M(a, b) from a onto the cone C on 5 from a as

follows. For each x in C—M(a, b) — {a) there is a unique point y such that

axy holds. Let x'=f(x) be that point on S(a',y') such that dx'\dy' =

ax lay. From above it is clear that/is a bijection. If {xn} is a sequence of

points of C converging to x0, and, for each i, y¿ is the point of M(a, b)

such that xt belongs to S(a,y¡), then it follows that {yn} converges to y0.

Thus {y'n} converges to jó, and then {x'n} must converge to x'0. In the same
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manner we see that/-1 is continuous; hence / is a homeomorphism.

Since C is known to be a 2-cell, the lemma follows.

Theorem 1. A nondegenerate compact space X is a 2-sphere if and only

if there is a metric for X under which X has the WLMP.

Proof.   If X is a 2-sphere, then it is homeomorphic to

{(x,y,z)\x2+ y2 + z2= 1}

in £3. The usual "shortest arc" metric on this round sphere satisfies the

conditions of the theorem. For the other half of the proof we assume

that A" is a nondegenerate compact metric space with the 1-WLMP.

Let a' and b' be two distinct points of A", and let u be in M(a , b').

According to Lemma 5 there exists another point v in M(a , b') and two

maximal segments whose union is M (a', b') and whose intersection is

{u, v}. If m and m are the midpoints of these maximal segments, then m

and m belong to the convex compact set M(u, v). Then M(u, v) contains

a segment S(m, m), and this segment is maximal for otherwise either u

or v would belong to M(u, v) by the WLMP. From Lemma 5 there is

another maximal segment in M(u, v) joining m to m'. We let a and b be the

midpoints of these two maximal segments in M(u, v). Note that m and m

belong to M(a, b), and since a and b lie in M(u, v) we know that ua=av

and bu=bv. Now a, b, u, and v all lie in M(m, m), and from the WLMP

we see that any segment in M(m, m) joining u and v is maximal. Since two

such maximal segments exist in M(m, m) we know that uav and ubv

hold. Thus ua+av=uv—ub+bv and it follows that 2(au) = uv and 2(bu) =

uv. Thus au=bu, and similarly av=bv. This means that u and v belong to

M(a, b). Since m, m , u, and v all lie in M(a, b), it follows from the WLMP

that M(a, b) = M(a', b'). We have no more need for a' and b'.

We now show that for each y in M (a, b) there is a unique segment with

endpoints a and y. If y is either m or m , then a nonmaximal segment

S(a,y) exists in M(u, v), and therefore S(a,y) is unique by Lemma 2.

Since M(m, m') contains a, b, u, and v it follows from the WLMP that

there is a nonmaximal segment S(a,y) in M(m, m) if y is either u or v.

Thus such a segment is also unique. We now assume that y $ {m, m , u, v}.

By relabeling points if necessary it may be assumed that myu holds. From

Lemma 1 we know that there exists a segment S(a, y) and two distinct

points p and q in M(a,y) such that M(p,q) contains S(a, y). Since the

segment S(a, y) is known to be unique unless it is a maximal segment (by

Lemma 2), we suppose that S(a, y) is maximal in order to obtain a con-

tradiction. It follows from Lemma 5 that M(p, q) is the union of two

maximal segments Sx(a,y) and S(a, y) whose intersection is {a, y}.

Notice that M(p, q)C\M(a, b) = {y}, for otherwise the 1-WLMP implies
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the contradiction that a belongs to M(a, b). Let r and zz be the midpoints

of S(a, y) and Sx(a, y), respectively, and note that M(a,y) contains

{r, n). Thus, from Lemma 5, M(a,y) is the union of two segments Sx

and S2, having endpoints z* and n, such that SxC\S2={r, n). Let A and B

be the mutually separated sets promised by Lemma 4 whose union is

X—M(a, b) with ae A and b e B. Notice that both r and n belong to A.

Suppose that there is a point/of B in one of the two segments Sx and S2.

Then M(a,b) would contain two interior points of Sis z'=l or 2, since

the endpoints of S{ both lie in A. From WLMP it would follow that/

lies in M(a,b), a contradiction. Thus M(a,y)C\B=0. Since M(a,y)

separates a from y it must follow that M (a, y) intersects each of the

unique segments S(a, u), S(a, m), S(a, m), and S(a, v). Since S(a, u)\J

S(a, v) is a maximal segment in M(m, m!) (see Lemma 5 and the WLMP),

M (a, y) cannot intersect its interior twice. Then u and v must lie in M (a, y).

Similar reasoning shows that both m and m lie in M(a,y). From the

1-WLMP it follows that M (a, b) lies in M (a, y), contrary to the fact that y

does not belong to M(a,y). Therefore the segment S(a,y) is unique.

Similarly segments S(b, y), with y in M(a, b), axe unique.

Now we may apply Lemma 6 to obtain two 2-cells Dx and D2 by coning

M(a, b) from a and b, respectively. We shall prove that the 2-sphere

X'=DxuD2 is X. Suppose to the contrary that there is a point y in X— X'.

We may suppose that ay<by since y $ M (a, b). Let S(a, y) be a segment

and notice that it does not intersect M(a, b). Since X has no ramification

points (Lemma 3) it follows that S(a, y)(~\X' = {a}. Choose a point z in

M (a, b), and a segment S(y, z). Order S(y, z) from y to z and pick the

first point y' of X' C\S(y,z). Since ay<.by and S(y, y')r\M(a, b) contains

at most the point y , it follows that y' lies in Dx. Let p be the point of

M (a, b) such that y e S(a, p). Now M (a, y') cannot intersect the segment

S(a,p) at the point other than the midpoint t of S(a, y') by the WLMP.

Thus there is a segment S(h, k) in M(a, b), with/z in its interior, such that

S(h, k)C\M(a,y')=0. The cone D on S(h, k) from a is a 2-cell (see the

proof of Lemma 6) in /),. Each segment S(a, x), with x in S(h, k), must

intersect M(a,y), for otherwise M(a,y) would not separate a from y'

in D. From WLMP the intersection of S(a, x) with M(a, y) consists of a

single point wx. Let R be the union of all segments S(a, wx), x in S(h, k),

and let F be the union of all segments S(wx, x). Then R<uT= D and R and

F are each closed and connected. From the unicoherence of D [5, p. 374],

Rr\T is connected. Since /vOFc M(a,y'), there must be an arc G in

RC^T with t in its interior.

Let {xA be a sequence of points in Siy,y') converging to y , and notice

that there is an integer K such that, for i>K, each segment Sia, xA

intersects M(a,y') at a unique point tt. This is because M(a,y') separates
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a from y' in the simple closed curve in S(a, x¡)vS(Xi, y')<uS(a, y') and,

for large i, S(x{,y')(~\M(a, /)— 0 ; the uniqueness of t( comes from the

WLMP. The continuity of the metric insures that {:,} converges to /.

This is a contradiction since it is impossible for the simple closed curve

M (a, y') to contain an arc G and to contain a sequence {?,} of points not

in G but converging to the interior point / of G.

This establishes the fact that X is the 2-sphere A', and completes the

proof of Theorem 1.

Theorem 2. A nontrivial compact space X is isometric to a 2-dimensional

spherical space if and only if X has a metric with the I-WLMP.

Proof. Since 2-dimensional spherical space has a metric with the

1-WLMP we need only show the proof in the other direction. Thus we

now assume that A is a nontrivial compact metric space with the 1 -WLM P.

From Theorem 1, A is homeomorphic to a 2-sphere.

Busemann [4] has shown that a 2-dimensional compact C-space with

convex midsets is isometric with 2-dimensional spherical space. Since A" is

2-dimensional, compact, and has convex midsets, Theorem 2 will follow

from [4] once we show that A is a C-space. The only condition on a G-

space that is not either obvious or given by previous lemmas is the locally

externally convex property. We shall now show that X has this property.

We assume all of the proof and notation from Theorem 1 up to the last

two paragraphs, so that we know the 2-sphere X is the union of the two

2-cells Dx and £2. These cells are the cones from a and b, respectively, on

M(a, b). A point p of X cannot lie in all three midsets M(a, b), M(u, v),

and M(m, m), so we assume for convenience that p is not in M(a, b).

A connected neighborhood N of p is chosen so that Nr\M(a,b)=0.

Let x and y be two points of A^. To show that X is locally externally

convex at p it suffices to exhibit a point z in N such that xyz. From Lemma

1 we see that there exist two points q and r and a segment 5 joining x and y

such that Sc M(q, r). The selection of z can be made in M(q, r) if S is not

a maximal segment. Suppose that 5 is a maximal segment in the simple

closed curve M(q, r). Since A' does not intersect M(a, b), we may assume

that x and y are both closer to a than tob. From the WLMP it follows that

Sues in Dx. (Notice that if we had assumed that p was not in some midset

other than M(a, b) at the outset, then we could still go through the proof

of Theorem 1 to write X as the union of two 2-cells D[ and D[, each a

cone on a midset. Thus the proof would go through just the same.)

Since M(q, r) is the union of two maximal segments S and S' with end-

points x and y and since S lies in £,, it follows from the WLMP that

M(q, r) lies in Dx. Unless M(q, r) separates a from M(a, b), some segment

from a to M(a, b) would intersect M(q, r) twice and would consequently
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lie in M(q,r). This would force N to contain a point of M(a, b). Thus

M(q, r) separates a from M(a, b). But then a segment S(m, m) in M(u, v)

would intersect M(q, r) twice (at least once in its interior) and would lie

in M(q, r) by the WLMP. Again this would contradict the fact that N

does not intersect M(a, b).

Thus X is locally externally convex and the proof is complete.
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