THE LARGEST SUM-FREE SUBSEQUENCE FROM A SEQUENCE OF n NUMBERS

S. L. G. CHOI

Abstract

Let $g(n)$ denote the largest integer so that from any sequence of n real numbers one can always select a sum-free subsequence of $g(n)$ numbers. Erdös has shown that $g(n)>2^{-1 / 2} n^{1 / 2}$. In this paper we obtain an improved estimate by a different method.

1. For any natural number n, let $g(n)$ denote the largest integer so that from any sequence of n real numbers one can always select a sum-free subsequence of $g(n)$ numbers, namely, a subsequence of $g(n)$ numbers none of which is the sum of other numbers of the subsequence. An estimate of the type

$$
\begin{equation*}
g(n)>c n^{1 / 2}, \quad n \geqq n_{0} \tag{1}
\end{equation*}
$$

was first obtained by Erdös [1] with $c=2^{-1 / 2}$ and $n_{0}=1$. The purpose of this note is to establish (1) with $c=36 / 35$ and n_{0} sufficiently large by an entirely different method. We mention that a slight improvement over 36/35 is certainly possible by our method but it appears that a new idea may be needed to improve the constant to $2 .{ }^{1}$

First, for the sake of comparison with our method, we recall Erdös' simple and elegant proof of (1) with $c=2^{-1 / 2}$.

Let a_{1}, \cdots, a_{n} be a sequence of n numbers and T be large. Denote by \mathscr{I}_{j} the set in $\alpha, 0<\alpha<T$ for which $a_{j} \alpha(\bmod 1)$ is between $(2 n)^{-1 / 2}$ and $2^{1 / 2} n^{-1 / 2}$, and by $m\left(\mathscr{I}_{j}\right)$ the measure of \mathscr{I}_{j}. Then

$$
\left|m\left(\mathscr{I}_{j}\right)-\frac{T}{(2 n)^{1 / 2}}\right|<A
$$

where A depends at most on the a 's. From this inequality it follows that there is an α and at least $(n / 2)^{1 / 2} a$'s, say $a_{i_{j}}\left(1 \leqq j \leqq(n / 2)^{1 / 2}\right)$ such that $a_{i_{j}} \alpha(\bmod 1)$ is between $(2 n)^{-1 / 2}$ and $2^{1 / 2} n^{-1 / 2}$.

Received by the editors July 6, 1972.
AMS (MOS) subject classifications (1970). Primary 10L10.
Key words and phrases. Sum-free, subsequence, real numbers.
${ }^{1}$ It has recently been brought to my knowledge that Professor Cantor has (essentially) improved the constant to $\sqrt{ } 2$ by a refinement of our method.
2. A very simple argument suffices to prove (1) with $c=1$. Let

$$
\begin{equation*}
a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \tag{2}
\end{equation*}
$$

be a sequence of n real numbers. We select from the sequence (2) a set of k distinct numbers $b_{1}, b_{2}, \cdots, b_{k}$ satisfying

$$
\begin{equation*}
b_{i} \geqq 2 b_{i+1} \quad(i=1,2, \cdots, k-1) \tag{3}
\end{equation*}
$$

as follows. Let $b_{1}=a_{1}$ and suppose $b_{i}(i \geqq 1)$ has been chosen. Then we choose b_{i+1} to be the largest number from (2) not exceeding $\frac{1}{2} b_{i}$. Suppose b_{k} is the last number that can be so selected. The sequence $b_{1}>b_{2}>\cdots>$ b_{k} is clearly sum-free and we have (1) with $c=1$ if $k \geqq n^{1 / 2}$. Suppose now $k<n^{1 / 2}$. Then on putting $b_{k+1}=a_{n}-1$, we see that there exists some j^{*} $\left(1 \leqq j^{*} \leqq k\right)$ such that at least $n^{1 / 2}$ numbers of (2) lie in the interval $\left(b_{j^{*+1}}\right.$, $b_{j *}$]. These numbers are sum-free since $b_{j *} \leqq 2 b_{j^{*+1}}+1$.
3. We proceed to obtain (1) with $c=36 / 35$. We let the numbers b_{1}, \cdots, b_{k} be defined as in $\S 2$. We may clearly assume

$$
\begin{align*}
k & \leqq(36 / 35) n^{1 / 2} \quad \text { and } \tag{4}\\
\left|\mathscr{S}_{j}\right| & \leqq(36 / 35) n^{1 / 2} \quad(j=1, \cdots, k) \tag{5}
\end{align*}
$$

where \mathscr{S}_{j} denotes the set consisting of all numbers (not necessarily distinct) of (2) in the interval (b_{j+1}, b_{j}], and where $\left|\mathscr{S}_{j}\right|$ denotes the number of elements of \mathscr{S}_{j}.

Let $\mathscr{S}_{i_{j}}(j=1, \cdots, h)$ denote those sets containing at least $(31 / 35) n^{1 / 2}$ elements. We have, on using (5)

$$
(k-h)(31 / 35 n)^{1 / 2}+h(36 / 35) n^{1 / 2} \geqq n, \quad \text { i.e. } \quad h \geqq 7\left(n^{1 / 2}-(31 / 35) k\right)
$$

which gives, because of (4)

$$
\begin{equation*}
h \geqq 7\left(1-\frac{31.36}{35^{2}}\right) n^{1 / 2} \tag{6}
\end{equation*}
$$

Let h_{1} be defined by

$$
\begin{equation*}
h-h_{1}-1>\frac{\log \left((36 / 35) n^{1 / 2}\right)}{\log 2} \geqq h-h_{1}-2 \tag{7}
\end{equation*}
$$

We remark for future reference that a consequence of (7) is that every number in $\bigcup_{j=1}^{h_{1}} \mathscr{S}_{i_{j}}$ is larger than β which denotes the sum of all the numbers in $\mathscr{S}_{i_{j}}$. We also note that in view of (6) and (7) we have

$$
\begin{equation*}
h_{1} \geqq(3 / 5) n^{1 / 2} \tag{8}
\end{equation*}
$$

if n is sufficiently large.
We now consider two cases.

Case 1. There exists some $j^{*}\left(1 \leqq j^{*} \leqq h_{1}\right)$ such that $\mathscr{S}_{i_{j}{ }^{*}}$ contains a set \mathscr{U} of $\geqq\left|\mathscr{S}_{i_{j} *}\right| / 6$ distinct numbers differing from one another by more than β.

Case 2. For each $j=1,2, \cdots, h_{1}$, there exists in $\mathscr{S}_{i_{j}}$ a set \mathscr{J}_{j} of 7 numbers all contained in an interval of length β.

If Case 1 holds then the set consisting of all the numbers in \mathscr{U} and $\mathscr{S}_{i_{h}}$ is sum-free. To see this we first note that \mathscr{U} and $\mathscr{S}_{i_{n}}$ are both sum-free. Next we recall that by construction any two numbers in \mathscr{U} differ by more than β, which is the sum of all numbers in $\mathscr{S}_{i_{n}}$. Finally the remark following (7) completes the argument.

We next consider Case 2. We define v by

$$
\begin{array}{ll}
v=h_{1} / 4 & \text { if } 4 \text { divides } h_{1} \\
v=\left[h_{1} / 4\right]+1 & \tag{9}\\
\text { otherwise }
\end{array}
$$

and consider the v sets $\mathscr{F}_{1+4 j}(j=0,1, \cdots, v-1)$. We shall show that $\bigcup_{j=0}^{v-1} \mathscr{J}_{i+4 j}$ is sum-free. To this end it suffices to show
(i) For each $i(i=0,1, \cdots, v-2)$ the sum of all the numbers in $\bigcup_{j=i+1}^{v-1} \mathscr{J}_{1+4 j}$ is less than any number in $\mathscr{J}_{1+4 i}$.
(ii) The difference between any two distinct numbers belonging to the same $\mathscr{J}_{1+4 i}$ is less than any number in $\bigcup_{j=0}^{v-1} \mathscr{J}_{1+4 j}$.

To see that (i) holds we note that the sum of all the numbers in $\bigcup_{j=i+1}^{v-1} \mathscr{J}_{1+4 j}$ is $<7 M_{i}\left(1+2\left(1 / 2^{4}+\left(1 / 2^{4}\right)^{2}+\cdots\right)\right)<8 M_{i}$ where M_{i} denotes largest number in $\mathscr{J}_{1+4(i+1)}$, whereas the smallest number in $\mathscr{J}_{1+4 i}$ is at least $8 M_{i}$.

For the purpose of establishing (ii) we recall that, by construction, two distinct numbers in the same $\mathscr{J}_{1+4 j}$ differ by at most β whereas any number in $\bigcup_{j=0}^{v=1} \mathscr{J}_{1+4 j}$ is larger than β, by the remark following (7).

Finally we see that Case 1 gives a sum-free set of cardinality at least

$$
|\mathscr{U}|+\left|\mathscr{S}_{i_{n}}\right|>\frac{7}{6}\left(\frac{31}{35}\right) n^{1 / 2}=\frac{31}{30} n^{1 / 2}
$$

and that Case 2 gives a sum-free set of cardinality at least

$$
\left(\frac{h_{1}}{4}\right) 7>\frac{7}{4} \cdot \frac{3}{5} n^{1 / 2}=\frac{21}{20} n^{1 / 2}
$$

on using (9) and (8).
In either case (1) is satisfied with $c=36 / 35$.

Reference

1. P. Erdös, Extremal problems in number theory, Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc., Providence, R.I., 1965, pp. 181-189. MR 30 \#4740.

Department of Mathematics, University of British Columbia, Vancouver 8, British Columbia, Canada

