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ASYMPTOTIC INVERSION   OF  LAPLACE TRANSFORMS:
A  CLASS  OF  COUNTEREXAMPLES

JOHN S.  LEW

Abstract. Let / be a complex-valued locally integrable func-

tion on [0, + co), and let Lfbe its Laplace transform, whenever and

wherever it exists. We review some known methods, exact and

approximate, for recovering/from Lf. Since numerical algorithms

need auxiliary information about / near + oo, we note that the

behavior of/near +co depends on the behavior of Lf near 0 + ,

hence that our ability to retrieve/is limited by the class of moment-

less functions, namely, all functions / such that Lf(s) converges

absolutely for Re(s)>0 and satisfies

Lf(s) = ois")   near 0 +        for n = 0, 1, 2, • • •.

We discuss the space Z of momentless functions and complex

distributions, then construct a family of elements in this space

which defy various plausible conjectures.

1. Introduction. Let/be a complex-valued locally integrable function

on [0, +oo), and let

(1.1) L[f; s] =Jo exp(-s0/(0 dt

be its Laplace transform, whenever and wherever this integral exists.

Indeed [21, pp. 96-102] for some aa(f) and oc(f) with -oo<<rc(/)<

°'a(/) = + 00 there are maximal half-planes Re(s)><Ta(/) and Re(/)>o-c(/)

in which respectively L[f; s] is absolutely convergent and conditionally

convergent. If these half-planes are non void, then L[f, s] is also holo-

morphic at least in Re(i)>ffc(/), and fit) is uniquely determined by

L[f; s] except on a set of measure zero [21, pp. 99, 108].

An important step in many problems is the inversion of a Laplace

transform, that is, the recovery of fit) from L[f; s]. Sometimes this can

be accomplished exactly through transform tables (e.g. [5]), inversion

formulas ([3, p. 286], [6], [21, pp. 108, 141]), or convergent series ([3,

pp. 301-305], [17, p. 97], [18], [19, Chapter 9]). However many inversions
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employ numerical techniques ([1], [2]), which typically lose accuracy

for large t; hence such algorithms require further information which

describes/((") approximately near + oo. Theorems which derive the limiting

behavior of f(t) from that of L[f; s] are called respectively Tauberian or

inverse Abelian according as they involve extra hypotheses on f(t) or on

Lifts].
If/(/) can be expressed by the inversion integral [21, p. 108]

(1.2) f(t) = Í27TÍ)-1 ¡C' ,C°exp(i5)L[/; s] ds,
JC—ICO

if/[/; s] can be continued analytically to the left, and if the contour of

(1.2) can be moved sufficiently in that direction, then the behavior of

/(/) near +oo is determined by that of L[f; s] near its rightmost singular-

ities. If these singular points are all poles then their contributions are

simple residues and [4, p. 110]

GO

(1.3) fit) ~ 2 ^»(0exp[fl(»i)t]    near + oo,
m=Q

with Pm a polynomial for each m, and Re[a(m)]J,—oo as m—»co. An

essential singularity of L[f; s] yields a Taylor expansion forPm [3, p. 488].

If L[f; s] has a branch point s0 as its unique rightmost singularity, then

s0 may be shifted to the origin without loss of generality. Thus for any

positive a we can infer J*o/(w) du~cta¡Y(\ +a) near + oo by the Tauberian

theorem of Karamata [19, p. 197], given that L[f; syncs'" near 0+

and that/(i)+rcia~1^0 for some k. Also for any complex a we can infer

that/(r)~cia-1/r(a) near -foo by inverse Abelian theorems of Doetsch,

given that /[/; í]~cí~a near 0 in a sector |arg s\^0, where either 0>ir/2

or 0=7t/2, and in the latter case L[f; s] satisfies further conditions on the

imaginary axis. For generalized functions some results of this kind have

been proved by Lavoine [12], involving the regularized functions c/a_1;

for log/(r) some estimates near +oo have been obtained by Wagner

([17], [18], [25]), describing still more singular behavior.

To get sharper results at a branch point, we consider series

00

(1.4) /(0~2P™(1°8í)ía(m>    near+°°

with Pm and Re[a(m)] as in (1.3). Expansions near +co of this form, or

near 0+ with Re[a(w)]|+oo, were originally treated, it seems, by Mellin

[13], and are thus called Mellin series or expansions by the author. If the

function/has a Mellin series near -foo then this series for/, and certain

values of its Mellin transform, determine systematically a Mellin series
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for L[f; s] near 0+ [7] ; while this series for L[f; s] and the existence of an

expansion (1.4) determine uniquely the Mellin series for/(/) near +oo

([8], [9]). The existence and form of a series (1.4) follows by two inverse

Abelian theorems of Doetsch ([4, pp. 150-160], [9], [11]) from assump-

tions on L[f; s] in a sector |args|_iö, where either 0>7r/2 or 0=7r/2,

and in the latter case L[f; s] satisfies further conditions on the imaginary

axis. However these assumptions on L[f, s] are not necessary [9, Example

4]. These results of Doetsch have also been extended in work of Riekstina

([23], [24]).
To explore all possibilities for theorems of this kind, we remark that if

g is rapidly decreasing near +oo then L[g;s] can be expanded by

moments :
OO /*X

(1.5) L[g;s]~;]>>n(-sr>!    near0+        with   pn =      tng(t) dt.
n=0 JO

Thus any transformable g will be called a momentless function if cro(g)_|0

and

(1.6) L[g;s] = o(sn)   nearO+        for all n = 0, 1, 2, • ■ • .

A nontrivial example from standard tables [5, p. 158] is

git) = r1'2 cosikt)1'2   with k > 0,

L[g;s] = i^lsy/2expi-kl4s).

If g is a function of this kind then L[f; s] and L[f+g; s] have identical

Mellin series near 0 + . Thus the Mellin series for/is not recoverable

unless all permissible g are rapidly decreasing under the set of hypotheses

for a conjectured theorem. We shall therefore construct a class of moment-

less functions and distributions through which we may eliminate a number

of conjectures on asymptotic inversion.

2. Notation. We shall construct the desired counterexamples on

[0, -f-oo) as a family of functions and measures, but can introduce the

associated concepts more easily in a space of generalized functions.

Indeed if D'+ is the space of Schwartz distributions on (— oo, +oo) with

support in [0, +oo) then D'+ is a commutative algebra over the complex

field under "pointwise" addition, scalar multiplication, and the standard

convolution ([15, pp. 113, 121], [22, pp. 122-130]). This convolution

/* g for elements of D'+ extends the definition

(2.1) U * g](t) = j/(t - u)g(u) du

for functions on [0, +°o) [15, p. 115].
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Within D'+ let e represent the Dirac delta "function", so that e is the

identity for this algebra, and let 1+ denote the Heaviside step function, so

that

(2.2) UWKO "[/(«)<*«

for functions on [0, +oo). Then we can define

(2.3) f*° = e,       /*"-/,       f*n+1 =/*/*"

for any/in D'+ and all «=1, 2, • ■ ■ . Moreover D'+ is closed under

(2-4) /-*!+»/,       f^dfldt,

and the first of these mappings is the inverse of the second.

For any element/of D'+ and any complex s=c+iu the Laplace trans-

form L[f; s] is defined ([15, p. 217], [22, p. 222]) as the Fourier transform

/•OO

(2.5) exp(— i'íM)exp(—ct)f(t) dt
Jo

whenever exp(—ct)f0) is in the space S', so that (2.5) is a well-defined

entity. Then for some value a(f), either real or ±co, the transform

L[f;s] is defined and analytic on Re(i)>cr(/), and for functions on

[0, +oo) this half plane of existence includes the preceding Re(i)>o-0(/)

([15, p. 218], [22, p. 223]).
Now consider the set A of all/in D'+ such that L[f; s] is defined in this

sense for Re(s)>0 at least and such that

(2.6) L[f; s] = 0(sk)   for some real k

as s—>-0 in this half plane. Clearly A is a subalgebra of D'+ by the con-

volution theorem ([15, p. 222], [22, p. 240]), and is closed under the

mappings (2.4) by the identities ([15, pp. 222-223], [22, p. 228])

(2.7) L[\+ */; s] = s-*L[ft s],       L[dfldt; s] = sL[f; s].

Call / moment less if it lies in ^4 and satisfies (1.6); define Zas the set of all

such/. Then Z is an ideal in A by (1.6) and (2.6), while Z is closed under

(2.4) by (1.6) and (2.7).
Within A denote by / the space of all elements /which correspond to

locally integrable functions, modulo the space of all functions which

vanish except on null sets. The introduction of J offers a criterion for A :

iff is given in D'+ then/is also in A whenever 1*" */is in / for some

«=0, 1, 2, ■ ■ • , and

(2.8) [!*" */](i) = oOk)   near +oo
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for some k>0. Indeed, under these conditions L[\*n */; s] is absolutely

convergent on Re(s)>0 and is o(s~k-1) as s^O ([19, p. 182], [22, p. 249]);

so that L[f; s] satisfies (2.6) by use of (2.7). However this criterion is not

necessary, for

(2.9) g(t) = J (d/dtre(t - n)
n=0

is in A, but no 1*" * g is in /.

Let M be the set of all fin A which correspond to complex measures

on [0, + oo), namely, those for which 1+ */has locally bounded variation.

Then M is a subalgebra of A [19, p. 84]; measure algebras are discussed in

standard works ([10, pp. 141-150], [14, pp. 13-17]). Let Cn be the set of
all/in / which have « continuous derivatives on (— oo, +oo), for all

n=0, 1, 2, • • • or oo. Then J is an ideal in M [10, p. 143], all Cn are ideals

in M [15, p. 122], and C00 is closed under (2.4).

Finally, we collect these remarks on algebraic structure to obtain the

following ideals in the system M:

(2.10) Z C\M,Z C\J,       Zr\Cn    for«=0, 1,-• • , oo.

Therefore we can generate elements of ZC\M with arbitrary preassigned

smoothness from a special family {hax} with a and x suitable real numbers.

Also we can construct more singular elements of Z by repeated differ-

entiation of «„ _.a.x

3. Construction.    For any real a and x the expression

(3.1) K(a, x, z) = (X-z)-1-^ exp[xz/(z - 1)]

is analytic in the complex z plane cut from 1 to + oo, and is the generating

function [16, equation (5.1.9)] for the generalized Laguerre polynomials

Llna)(x), so that

00

(3.2) K(a, x, z) = 2 Li:\x)zn    for    |z|< 1.

Moreover, by Fejer's formula [16, equation (8.22.1)],

LfZXx) = 7T-1exp(xl2)x('2a-1),i-n(2a-1)/i-cos[2(nx)1/2 - (2a + 1)tt/4]

(13) + 0[n{2a-3),i]    asn^+oo

uniformly on any compact interval in 0<x< + oo.

On |z|^l the series (3.2) converges absolutely for a<— f- by the last

formula, and conditionally for a=— f by Littlewood's theorem [21,

p. 215]. However for each positive x the set

(3.4)       {2(nx)U2 - (2a + 1)77/4: « = 0, 1, 2, • • •}    modulo 2t7
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is dense in [0, 27r), so that, with any positive ô and «0,

(3.5) |L(„a)(x)| ^ (1 - d)*-"1 exp(x/2) • x(-2a'v/i ■ «(2a-1)/4

for some «>«0- Thus Ln\x) for large « is not 0(«r) unless r^.(2a—1)/4.

For any fixed real a and positive x, letting e(t) be the Dirac delta

function, we construct
OO

(3.6) hUÛ = 2 L{n\x)e0 - n).
71 = 0

By Abel's theorem [21, pp. 27-28] if at%-% then

(3-7) [1+ * K.J(+ oo) = 2 ¿fix) = lim K(a, x, z) = 0.
n=0 z->l-

By this relation and (3.3), if a is arbitrary then

(3.8) [1+ * hax](t) = O [*<**•»/*]   as / -* + oo.

Hence by (2.8) these hax are elements of M with support on the nonnega-

tive integers. Moreover these ha.x are elements of Z, since if Re(s)>0 then

CO

L[hay, 5] = 2 L<na,(x)exp(-«s) = K(a, x, exp(-s))
VJ.'' 71=0

= o(sm)   near 0+        for m = 0, 1, 2, • • • .

Example 1. Before finding this construction the author advanced the

conjecture that iff were an element of Z which was bounded as a measure

on [0, + oo) then

(3.10)   [l+*/](+oo)- [1+ */](?) = o(rn)   near+oo       for all «>0.

However if a<— f then hax is a bounded measure on [0, +oo) by (3.3),

and hax is algebraically decaying near + oo by (3.5). Indeed some multiple

of hax, by (3.7), is the difference of two probability measures on the inte-

gers; hence these measures differ by a momentless distribution which decays

no faster than t{2a-l)li.

Example 2. One might suppose that matters would improve for

functions / in ZC\V-(— oo, +oo). However let f=g*hax, where g is

intuitively any function in Lx[0, +oo), or technically any function in

/OLH-oo, +oo). Then by (2.10),/is in ZC\J for all real a, and by (3.3),

/is in Zc\Lx(— oo, -f-oo) for a<—\. Moreover if g is unbounded at the

origin and is bounded outside each neighborhood of zero, then/or some

multiple is unbounded at r=0, 1, 2, ■ • • and is the difference between two

probability densities.

Example 3. One might expect more from the intersection of Z with

some Sobolev space. However if g is C°° with support in (0, 1) and if
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f=g * hax with hax as defined, then/is in ZnC" by (2.10) and/is in

Lp(—oo, +00) by (3.3) whenever

00

(3.11) 2 n(2a-lMi < + 00,

71=1

hence for allp in [1, +00] whenever a<—f. Moreover/<m,=g(m) * hax,

so that/*™' has the same properties as/, and thus/'™' is in Lp(— 00, + 00)

for all p in [1, +00] and all w = 0, 1, 2, • • ■ . At the same time/and its

derivatives decay no faster than t{2a~1)li.

These examples show that conditions on / of smoothness and integra-

bility cannot produce estimates off(t) near + 00 from estimates of L[f;s]

near 0+. Indeed for any fixed a and x, the numbers

(3.12) {L^(x):n = 0,1,2,-■■}

change sign according to (3.3), so that the functions f—g * hax oscillate

systematically as /->+oo. Thus the positivity condition of Karamata's

theorem serves to exclude some elements of Z. However this theorem

applies only to functions/for which 1+ »/grows algebraically near + 00,

whence new results might well arise from other hypotheses under which

/oscillates negligibly near + 00.
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