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ON UNIFORM ELEMENTARY ESTIMATES OF
ARITHMETIC SUMS

STEFAN A.  BURR

Abstract. A simple, elementary method is given for deriving

estimates of sums of arithmetic functions, the estimates being in a

certain sense uniform over a class of functions appearing in the

summation. The method is particularly well suited to estimates

needed in applications of Selberg's sieve.

Bateman [1] and Tull ([2], [3]) have given an elementary, but very

useful, method of estimating sums of arithmetic functions by means of

convolution arguments. It is surprising that such a straightforward and

useful technique was not systematically developed earlier. In fact, the

idea goes at least as far back as 1921, when Wilson [4] used it to estimate

2jtgi^2(n)' conjecturing that Ramanujan had done the same. However,

Wilson did not apparently recognize that the idea had very wide applic-

ability. Bateman and Tull seem to have been the first to recognize the

very general usefulness of the technique, and Tull ([2], [3]) has developed

the method very fully.

In this paper we will use a variant of the method to derive estimates of

sums of arithmetic functions, the estimates being in a certain sense

uniform over a class of functions appearing in the summation. This sort

of problem is particularly prevalent in applications of Selberg's sieve,

where the functions appearing tend to be rather complicated. Fortunately,

the complexities involved are of little consequence in applying the method.

In applying Selberg's sieve, the estimates required are of a rather

special type, and it is often sufficient to have estimates that are fairly

crude. In fact, it can be highly desirable to have straightforward estimates

that can be easily applied. With this in mind, we will restrict ourselves to

rather simple results; however, it should be obvious that they can be

greatly generalized. By restricting ourselves to simple results, we may

help to accomplish another objective of this paper, namely to render the

important idea  involved  more  accessible.   (Tull's  development  is  so
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thorough as to obscure the essential simplicity of the idea; each of [2]

and [3] have one main theorem, whose statements occupy one and two

pages respectively.)

Before proceeding to the results, we adopt the following convention.

If the letters /and g denote arithmetic functions, then F(s), G(s), Gx(s),

and G2(s) denote the Dirichlet series

/(n)>    fg(n)
71=1

\g(n)\

ylSUl    ygw
n=i   ns       7i=i ns

T-
n=i   n

|g(1)|+filMi^
71=2 «

respectively. We will also define rr(«) to be the number of ways n can be

expressed as a product of r factors (taking order into account). We use t

instead of the more usual d so that d can be used as an index. Note that

£r(s) is the Dirichlet series generating function of rT. We will use the

following crude forms of well-known results :

(i) 2T» - y-h^rx l0^x x + °(* losr~2 *>•
7.S* (r - 1)!

t~>\ V Tr(") I  i      r       ,    r,n      r-1    v(2) Z,-= — log x + 0(\og     x).
nSx  n        r\

For an elementary proof of a much stronger version of (1) see [5, p. 263];

(2) follows from (1) by Abel summation.

Theorem 1.    Let f be an arithemetic function and let g be such that

(3) /(«) = 2 *(<*)t,(»ao.
d\n

with r_2, and suppose that G2(\) exists. Then

(4) 2 /(") = J-hr, G^x l08r_1 x + 0<fizV)x log'"2 x)

and

(5) 2 —■ = -, G(l)logr x + 0(G2(l)\ogr-1 x),
„s* «        r\

where the implied constants depend only on r.
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Proof.    We prove (4) first. Making use of (3) and (1), we have

2/(")= 2 g(d)rr(m)=2s(à) 2 rr(m)

= xT^(-!-(log'-1 x - (r - l)logr-2 x log d
„S« à   \r-\)\

+ ■■•+ (-I)'"1 log'"1 d) + 0(logr'2 x))

= -^—x\oë^xl^ + o(x\or2x2l^^(logd + l))
(/- 1)! ¿s, d \ däx   d I

-^xlog-xf^ + 0(x.og-x2ilMi^)
(r-1)! Ó   d \ d~        d        /

+ 0(xlog-x(|g(l)|+2l^^^))
^ v dix       d       II

= ,    X 1N, G(l)x log'"1 x + 0(G2(l)x log'"2 x),
(r - \)\

where it is clear the implied constant depends only on r.

The result (5) can be proved from (4) using Abel summation; but it

can also be proved in much the same manner as (4), using (3) and (2):

v/(") _ V S(d) v Tr(m)
z—- z— z —

näx   n dix   "    mixld    m

= 2^(ilog^4-0(log-x))
dix d   \r\        d I

= 1 log' x 2 *W + O (log-1 x 2 im dog d + »)
r! dix d \ dSx   d I

= lG(l)log-x + 0(log-1x2lg(c/)l'0gd)

+ 0{lofr1x(\i(l)\+I1^^))
dix

m -Í- G(l)log'x + 0(G,(l)logr-1 x).
r\
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Again, the implied constant clearly depends only on r, so the proof is

complete.

In order to apply the above theorem to a function/, it is necessary to

determine a relation (3). This can be done by means of an inversion

formula, but at least in the case of a multiplicative function, it seems most

convenient to work directly with Dirichlet series. If F(s)=G(s)t,r(s), then

it is clear that the g so determined will satisfy (3). If G2(l) exists, then the

theorem can be applied, and in fact g need not be explicitly determined,

since the result requires only G(l) and G2(l). These facts are illustrated

by the following theorem, which gives an estimate of the sort typical of

those needed in applications of Selberg's sieve.

Theorem 2.    Ifr^.2 andN^l are integers,

2      - ("^C") = C(N)logr x + OQog-1 x logr+1 log 32V),
n^x;(n.N)=l n

where the implied constant depends only on r, and where

C(N) = u (1 + r/p)-1 • u (1 - 1/P)r(l + r/p).
p\N p

Here the second product runs over all primes.

Proof. Let %N(ri) be 1 if («, N)=\, and 0 otherwise. Then if we take

f(n)=p,2(n)xN(n)TT(n), the sum can be written 2„Sa;/(«)/«. We then have,

expressing F(s) as an Euler product:

F(s) = u (1 + XÁP>p-s) = Il (1 + rp~s)
V 33-TiV

(6)    = rw n (i - p-j n (i + rp~°)
p p-rN

= ?(*) Il (1 - P"T(1 + rp-°) 11 (1 + rP~Tl = T(s)G(s).
p p'N

This defines G and hence the function g. Note that the form of the

Euler product for F made it clear what power of the zeta function should

be removed from F. We now must estimate G2(l). To this end we rewrite

G:

g(s)=n a - p~r n (i - p"T(i + rp-)
p\N p-rN

= n (i - p-j n a - Mr + Dp-2s+•••),
p\N p-rN

so that

G1(s) = u (1 + P'*)* FI (1 + \r(r + l)p~2s +■■■) = H(s)K(s).
p\N pfN
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Now

G2(l) - 1 - Gi(l) = 1 - (H'(l)K(\) + H(l)K'(x)) = 0(-H'(\) + H([)),

since K(\) and K'(l) are bounded independently of/V.

We have -H'(s)=rH(s) 2v1n (P~s log/>/(l +p~s)), so

-tf'(l) + H(l) = o(n (1 + 1/P)r(l + 2 —)V
Un \      p|iY   p   11

From standard estimates involving primes, for instance see [6, Chapter

XXII], one can deduce Y\V\N (1 + 1//?)=O (log log 37V) and

i + 2 l58£ = 0(log log 3/v).
v\N    P

Therefore

G2(l) = OOog^1 log 3/V).

Using the fact that (6) implies a relation of the sort (3), and observing

that G(1)=C(/V), the second formula in Theorem 1 yields

2 /(«)/« = C(/V)logr x + OOog-1 x logr+1 log 3/V),

which is the desired result.

It is easy to see that \¡C(N) = 0(\ogr log 3N), so that the second term

is truly of lower order than the first whenever, for instance, TV is no

greater than a power of x. Theorem 2 permits one to derive, using Selberg's

sieve, a fairly simple universal upper bound for the number of n^M for

which n + t1, ■ ■ ■ , n + tr are all primes. This bound in turn provides the

starting point for an elementary solution of the Waring-Goldbach problem.

For details see [7].

Theorem 1, and the technique used in Theorem 2, can replace a number

of intricate arguments that have appeared in the literature, for instance

those of [8] and [9, Chapter 6]. Although some effort is still required,

it is quite mechanical in nature.

It should be noted that Theorem 1 can be easily extended to results

with more principal terms and an error term of similar form. Moreover,

with a little work, a bound on the error term can be given explicitly.

For example, if r=2, the right-hand side of (4) can be readily replaced by

G(l)x log x + (G'(l) + (2y - \)G(\))x + E(x),

with |£'(x)|^8G2(a)x!I for all x^l and all a_l for which G2(a) exists.
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