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TWO  TYPES  OF HYPERINVARIANT SUBSPACES

ROBERT  M.   KAUFFMAN

Abstract Let A be a bounded operator in a Banach space B.

Suppose that A has the single valued extension property. Given a

closed set Fin the complexes, define aA(F)to be the set of all x in B

such that there is an analytic function x(X) from the complement of

F to B with (A— ÂI)xW=x. A is said to have property Q if oA(F)

is a closed subset of B for every F.

Let A be, again, a bounded operator in a Banach space B. Given

a real number b, define SA(b) to be the set of all x in B such that

exp(—cf)exp(/ir)x is a bounded function from the nonnegative reals

to B for all c>b. A is said to have property P if SA(b) is a closed

subspace of B for all b.

These two properties are discussed in this paper.

Two types of closed invariant subspaces for a bounded operator A are

the subject of this paper. One is related to the solution of inhomogeneous

equations; the other is related to the asymptotic behavior of exp(At). Both

are hyperinvariant or, in other words, invariant under all operators com-

muting with A.

We define two properties related to these types of invariant subspaces,

which guarantee that if they occur they are closed. Property Q holds for all

decomposable operators (see Colojoara and Foias [1]) and has been long

known as one of the properties possessed by spectral operators.

In the sequel, A will be taken to be a bounded linear operator from a

Banach space B into itself.

We first define property Q. Suppose that A has the single valued exten-

sion property, or in other words that there is no solution x(X) of the

equation (A— Xl)x(X)=0 for all X in some complex domain, such that

x(X) is an analytic function from the domain to B. Define dA(x) to be the

set of all X0 in the complexes such that the equation (A — Xl)x(X)=x is not

solvable in any neighborhood of X0, with x(X) analytic. For a closed set F

in the complexes, define aA(F) to be the set of all x in B such that 6A(x)

does not intersect the complement of F. We say that A has property Q if

oA(F) is closed, for every closed set F, and A has the single valued extension

property. It is obvious that aA(F) is a hyperinvariant subspace.

Received by the editors January 6, 1972.

A MS (MOS) subject classifications (1970). Primary 47A15.

Key words and phrases. Hyperinvariant subspace, single valued extension property,

spectral operator, quasinilpotent operator, hyponormal operator.

© American Mathematical Society 1973

553



554 R.   M.  KAUFFMAN [August

We define property P. Let c be a real number. Let QA(c) be the set of all

x in B such that exp(—ct)\\ex.p(At)x\\ is a bounded function of t, where t

ranges over [0, oo). Given a real number b, the intersection of all QA(c)

with c>b is denoted by SA(b). If SA(b) is closed for all b, then we say that

A has property P.

It should be remarked that property P is defined in terms of SA(b)

instead of QA(b) in order that quasinilpotent operators have property P.

Clearly, if A has property P, all SA(b) are closed hyperinvariant subspaces

for A.

Lemma 1.    Ifx is in SA(b), then Re(X)^b for all X in 6A(x).

Proof.    For any X with Re(X)>b, define

i» GO

x(X) = —      exp(—Xt)E(t)xdt,      where E(t) = exp(At).
Jo

It is not difficult to show that (A — XI)x(X)=x for all X with Re(A)>¿>, and

that x(X) is analytic on this domain.

Theorem 1. If A has property Q or property P, and there is a point X0 such

that X0 is in the spectrum of A, with Re(X0)>c and SA(c) nonempty, then A

has a nontrivial closed hyperinvariant subspace.

Proof. Let x be in SA(c). By Lemma 1, X0 is not in 6A(x). However, if

there is no x0 such that X0 is in 6A(x0), then (A— X0I) is surjective. In this

case, X0 is in the point spectrum of A. The null space of A— X0I is then a

nontrivial closed hyperinvariant subspace. It is nontrivial because if A =

X0I, the hypotheses of the theorem cannot occur.

Thus we need only consider the case where X0 is in 0A(xo) for some x0.

By Lemma 1, x0 is not in SA(c), so that SA(c) is neither 0 nor B. If A has

property P, then SA(c) is a nontrivial closed hyperinvariant subspace.

If A has property Q, let R be an open ball about X0 in which the equation

(A — Xl)x(X)=x is solvable, with x(X) analytic. (Recall that x is in SA(c),

so such a ball exists.) Let R± be the open ball about X0 with half the radius

of R. Let K be the complement of Rx. x is in aA(K), but x0 is not. Thus

dA(K) is a nontrivial closed hyperinvariant subspace.

Corollary. If A has a closed invariant subspace S on which Ms||<

Re(X0)for some X0 in a spectrum of A, then A has a nontrivial closed hyper-

invariant subspace, provided that A has property P or property Q. Here As

denotes the restriction of A to S.

Proof. S is invariant under txp(At) and if x is in S, ||expL4f).x||^

exp(||v4s||r). Thus x is in SA(c), for any c in between \\AS\\ and Re(A0). By

Theorem 1, the proof is finished.
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Lemma 2. Let N be quasinilpotent, and suppose N commutes with A.

Then for any real number b, x is in SA(b) if and only if x is in SA+N(b).

Proof. Suppose exp(—ct)E(t)x is a bounded function of t on [0, oo),

where £(r)=exp(,4r)- Let F(t)=cxp(Nt). Then E(t)F(t)=exp((N+A)t).

However, for any d>0, ||exp(—dt)F(t)\\ approaches zero as t approaches

infinity. The proof of this fact follows:

Note first that ||/Vn||1/n approaches zero as « approaches infinity, by the

spectral radius formula. Recall that F(0=2o° NW/il Pick/ so large that

||jni/B<ii/2 for «>/.
Then

j j

mow = 2 w/'i + ^p((d/2)t) - 2 Vßyt'ii
0 0

J

^2(11^11' + (^2)^7'! + exp((¿/2)0.
0

Thus exp(—dí)||F(í)|| clearly approaches zero as t approaches infinity.

Now we finish the proof of the lemma. If c>b,

||exp(-C/)F(í)F(í)x|| = exp(-a0 ||F(i)|| exp(-(c - a)t) \\E(t)x\\,

where a=(c—b)\2. Thus if x is in SA(b), exp(—ct)E(t)F(t)x is a bounded

function from [0, oo) to B for c>b, so that x is in SA+N(b). This completes

the proof.

Theorem 2. If A has property P, and N is quasinilpotent and N com-

mutes with A, then A + N has property P.

Remark. If A has property Q, and N commutes with A, then A+N has

property Q. In fact, 6A(x)=dA+y(x) for all x. (See Colojoara and Foias

[1, p. 17], for the proof of a more general proposition.)

Theorem 3.    Any spectral operator has property P.

Remark. For the definition and properties of spectral operators, see

Dunford and Schwartz [2, Part III]. As shown there, any spectral operator

has property Q.

Proof. By Theorem 2, we need only show that every scalar operator

has property P. To do this, we show that SA(b)=P(9), where P(0) is the

projection associated with the borel set 6, and 0 is the set of complex

numbers with real part less than or equal to b.

Now, if A is scalar, then by the functional calculus (or by direct com-

putation) exp(At)=¡ e\p(Xt)dP^ where A=j XdPx. (See Dunford and

Schwartz [2, Part III, p. 1941].)
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Clearly, if x is in P(d)B, exp(—Xt)exp(At)x is bounded for Re(X)>b,

since by Corollary 4, Dunford and Schwartz [2, Part III, p. 1931], we

know that the projection valued measure P is bounded.

If x is not in P(d)B, there is a A such that A is an open subset of the

complexes, the distance from A to 6 is greater than e, and P(A)x#0. Let

Xx=b+e¡2. We will show that exp(—Xxt)txp(At)x is unbounded, or in

other words that jc is not in SA(b).

Call the bound for the projection valued measure M. Note that

exp(—^í)exp At=exp(Ct), where C=(A — X1I). By the spectral decom-

position for A, exp(—Cr)=j" exp(X1t—Xt) dPx. Thus

||exp(-Ci)P(A)x|| < exp(-ie/2)M||P(A)x||.

Also ||P(A);c|| = ||exp(-Cr)exp(Q)P(A)x|| = ]|exp(-0)P(A)exp(C/);c|| ^

exp(—re/2)||P(A)exp(Cf)x||. Therefore ||P(A)exp(C/)x|| approaches infinity

with t, so the same must be true for ||exp(Cr)x||. This completes the proof.

Remark. It may be necessary to multiply an operator by a complex

number in order to maximize the number or subspaces of type SA(b). For

example, if H is selfadjoint on a Hilbert space h, SiH(b)=h if b^.0, and

>SW(¿>) = 0 if ¿><0. However, SH(b)—P(6), where P is the spectral measure

associated with H and 6 is the borel set [— \\H\\, b].

In general it is not clear to the author whether multiplication by a com-

plex number destroys property P. In fact, it is doubtful whether the fact that

A has property P implies that — A has property P. Multiplication by a

positive real number merely introduces a scale change and does not affect

property P.

The following theorem and corollary give some elementary observations

related to the preceding remarks.

Theorem 4. Suppose cA has property P for every complex number c.

Then the intersection of all SXA(0), where X ranges over the complex numbers

of modulus I, is a closed hyperinvariant subspace on which the restriction of

A is quasinilpotent.

Proof. Let S be the subspace in question. It is clearly closed and

hyperinvariant. By Lemma 1, ojj(x) = 0 for all x in S, where R is the

restriction of A to S. Thus the only nonzero points of the spectrum of R

are eigenvalues. Clearly, however, R can have no nonzero eigenvalues

from its definition. Thus R is quasinilpotent.

Corollary. Let cA have property P for every complex number c. If

there is a closed invariant subspace for A on which the restriction of A is

quasinilpotent, then there is a maximal such subspace, and it is given by the

subspace S of Theorem 4.
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Proof. Any closed invariant subspace on which A is quasinilpotent is

contained in S, as can be deduced from Lemma 2. Thus S is the maximal

such subspace, and the corollary is proved.

Theorem 5. If A has property P or property Q, then the restriction of A

to any closed invariant subspace has the same property.

Proof. The case of property P is trivial, since any closed subspace

invariant under A is also invariant under exp(y4r).

The case of property Q is more difficult. We must show that aR(F) is

closed for any closed set F in the complexes, where R is the restriction of

A to the closed invariant subspace S.

If xn approaches x, and (R—Xl)xn(X)=xn on the complement of F,

with xn(X) analytic, we must find an x(X) analytic on the complement of

F such that (R—Xl)x(X)=x. By hypothesis we can solve the equation

(A—Xl)x(X)=x with x(X) analytic on the complement of F. We will show

that x(X) is in S for every X in the complement of F.

Let V be the topological vector space formed by the set of all analytic

functions y(X) from the complement of F into B, which have the property

that (A — XI)y(X) is a constant function from the complement of F into B.

Let the topology on V be the topology of uniform convergence on the

countable tower of open sets 6n, where 6n is the set of all complex numbers

X which are distant by more than 1 /« from F. Note that any element of V

is bounded on each dn. F is a Fréchet space. It is complete because, if yn

is a Cauchy sequence in V, and y is the pointwise limit, then f(y(X)) is

clearly an analytic function of X on the complement of F, if/is in B*.

However, any weakly analytic function is analytic, by a theorem of

Dunford (see Yosida [4, p. 128]).

The mapping T(x(X))=(A — Xl)x(X) is a continuous one to one mapping

from Kinto B. Since crA(F) is closed, and equal to the range of T, F-1 must

be continuous by the open mapping theorem. Therefore, if (A — XI)xn(X)=

xn on the complement of F, and xn approaches x, then xn(X) approaches

x(X) in B for each fixed X. But in the case we deal with, xn(X) is in 5 for

each X. Therefore x(X) is in S for each X, and the theorem is proved.

Theorem 6. If A has property P, then A has the single valued extension

property.

Proof. Suppose (A — Xl)x(X)=0 for x(X) analytic in a ball 0 about X0.

Let E(t)=exp(At). Then E(t)x(X)=exp(Xt)x(X). Thus x(X) is in S^(Re(A))

for every X in B.

In particular, S=SA(Re(X0)) is closed, and x(X) is in S for every A in 9

with Re(A)_Re(A0). Let / be a bounded linear functional on B that

annihilates S. Then/(x(A)) is identically zero on the set of X in 0 with
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Re(A)^Re(A0). Since/(x(A)) is an analytic function from 0 into the com-

plexes, f(x(X)) must vanish identically on 0. Thus any bounded linear

functional which annihilates S also annihilates all x(X) for X in 0. By the

Hahn-Banach theorem, x(X) must be in S for all X in 0. But this is im-

possible, since if X is in 0 and Re(A)>Re(A0), x(X) clearly cannot be in S.

Example. Let A be an isometry in a Hubert space. Then, as is well

known, A can be regarded as the restriction of a unitary operator in a

larger Hubert space. Therefore A has property P and property Q. How-

ever, if A is not unitary, it can be shown (Colojoara and Foias [1, p. 10])

that A* does not have the single valued extension property, and thus does

not have property P or property Q.

Theorem 7. If B is a Hubert space, and A is hyponormal, then A has

property P.

Proof.    Let £(i)=exp(,4r). Then

(£(0*, E(t)x)" = ((A + A*)E(t)x, E(t)x)'

= ((2A*A + A2 + (A*)2)E(t)x, E(t)x) ^ ((A + A*)2E(t)x, E(t)x)^0.

Recall that by definition A is hyponormal if AA*^A*A.

Thus if \\E(t)x\\ is bounded, ((A + A*)E(t)x, E(t)x)<:0 for all /^0, and

conversely.

However, the set of all x such that ((A+A*)E(t)x, E(t)x)^0 for all

t ̂ 0 is clearly closed in B. To sum up, if A is hyponormal, SA(0) is closed

in B.
But if A is hyponormal, (A — XI) is hyponormal for all complex numbers

X. Since exp(A — XI)t=exp(—Xt)E(t), it follows that for any real number b,

the set of all x such that exp(—bt)E(t)x is a bounded function of t on

[0, oo) is closed in B. Therefore SA(b) is an intersection of closed sets, and

is itself closed.
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