## BEURLING GENERALIZED PRIME NUMBER SYSTEMS IN WHICH THE CHEBYSHEV INEQUALITIES FAIL

## R. S. HALL

ABSTRACT. It is proved that there exist systems of generalized primes in which the asymptotic distribution of integers is  $N(x) = Ax + O(x \cdot \log^{-\gamma} x)$  with A > 0 and  $\gamma \in [0, 1)$  and in which the Chebyshev inequalities

$$\liminf_{x\to\infty}\frac{\pi(x)\log x}{x}>0,\qquad \limsup_{x\to\infty}\frac{\pi(x)\log x}{x}<\infty$$

do not hold.

A nondecreasing sequence P of real numbers  $p_1, p_2, \cdots$  such that  $p_1 > 1$  and  $p_i \to \infty$  is called a Beurling generalized prime number system. The associated system of generalized integers,  $N = \{n_i\}_{i=0}^{\infty}$ , is the sequence of real numbers obtained by letting  $n_0 = 1$  and arranging in nondecreasing order the elements of the multiplicative semigroup generated by P. The distribution functions  $\pi(x)$  and N(x) are defined in the natural way,

$$\pi(x) = \pi_P(x) = \sum_{x_i \le x} 1, \qquad N(x) = N_P(x) = \sum_{x_i \le x} 1.$$

Beurling [2] proved that if

(1) 
$$N(x) = Ax + O(x \log^{-\gamma} x)$$

with A>0 and  $\gamma>\frac{3}{2}$ , then the prime number theorem holds for the system, that is,  $\pi(x)\sim x/\log x$ . He also showed, essentially, that there exist systems for which (1) holds with  $\gamma=\frac{3}{2}$  and in which the theorem is not true. A summary of results and conjectures about systems of generalized primes is given in the recent work of Bateman and Diamond [1].

It is easy to show (as was done by the author in [3]) that if N(x) = Ax + o(x), then

$$\liminf_{x \to \infty} \frac{\pi(x)\log x}{x} \le 1, \qquad \limsup_{x \to \infty} \frac{\pi(x)\log x}{x} \ge 1.$$

Received by the editors November 13, 1972.

AMS (MOS) subject classifications (1970). Primary 10H40.

In the following article by Diamond the Chebyshev inequalities

$$\liminf_{x \to \infty} \frac{\pi(x) \log x}{x} \ge a > 0, \qquad \limsup_{x \to \infty} \frac{\pi(x) \log x}{x} \le A < \infty$$

are shown to hold when (1) is satisfied with  $\gamma > 1$ . In this paper we show that these Chebyshev inequalities need not hold when  $\gamma < 1$ .

THEOREM. Let  $\alpha \in [0, 1]$ ,  $\beta \in [1, +\infty]$ , and  $\gamma \in [0, 1)$  be given. There exists a generalized prime number system in which

- (i)  $N(x) = Ax + O(x \log^{-\gamma} x)$ ,
- (ii)  $\lim \inf_{x \to +\infty} (\pi(x) \log x / x) = \alpha$ ,
- (iii)  $\limsup_{x\to+\infty} (\pi(x)\log x/x) = \beta$ .

PROOF. Let  $\pi_0(x)$  be the distribution function for the rational primes. For each rational integer n define the interval  $I_n = (a_n, b_n]$  by  $\log^{1-\gamma} a_n = 2^n$  and  $b_n = a_n 2^{n/4}$ . Let  $C_n$  be the set consisting of the largest  $[(1-\alpha)\{\pi_0(b_n)-\pi_0(a_n)\}]$  rational primes in  $I_n$ . If  $\beta < +\infty$ , let  $D_n$  be a set consisting of any  $[(\beta-1)\{\pi_0(b_n)-\pi_0(a_n)\}]$  distinct real numbers in the interval  $(b_n-1,b_n]$ . If  $\beta = +\infty$ , let  $D_n$  be a set consisting of any  $[2^{n/8}\{\pi_0(b_n)-\pi_0(a_n)\}]$  distinct real numbers in  $(b_n-1,b_n]$ . Let  $C = \bigcup_{\substack{\text{odd } n}} C_n$ ,  $D = \bigcup_{\substack{\text{even } n}} D_n$ , and let  $P = \{p_j\}_{j=1}^{\infty}$  be the nondecreasing sequence formed from the set  $P = (R-C) \cup D$ , where R is the set of rational primes.

Then for some  $K = K(\beta)$  we have

$$\sum_{p \in C \cup D} \frac{\log^{\gamma} p}{p} \le \sum_{\text{odd } n} \{ \pi_0(b_n) - \pi_0(a_n) \} \frac{\log^{\gamma} a_n}{a_n}$$

$$+ K \sum_{\text{even } n} \frac{2^{n/8} \{ \pi_0(b_n) - \pi_0(a_n) \} \log^{\gamma} a_n}{a_n}$$

$$= O\left(\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}\right) = O(1).$$

Thus we see that  $\prod_{p \in C} (1 + \log^{\gamma} p/p) \cdot \prod_{q \in D} (1 - \log^{\gamma} q/q)^{-1}$  converges. If for Re s > 1 we define  $\{c_k\}_{k=1}^{+\infty}$  by

$$\sum_{k=1}^{+\infty} \frac{c_k}{k^s} = \prod_{s \in C} \left(1 - \frac{1}{p^s}\right) \prod_{q \in D} \left(1 - \frac{1}{q^s}\right)^{-1},$$

then we have

$$(2) \qquad \sum_{k=1}^{+\infty} \frac{|c_k| \log^{\gamma} k}{k} \leqq \prod_{n \in C} \left(1 + \frac{\log^{\gamma} p}{p}\right) \prod_{q \in D} \left(1 - \frac{\log^{\gamma} q}{q}\right)^{-1}$$

by repeated use of the inequality  $\log^{\gamma}(mn) = (\log m + \log n)^{\gamma} \le \log^{\gamma} m + \log^{\gamma} n$ .

Define for Re s>1 the function

$$\zeta(s) = \zeta_0(s) \prod_{p \in C} \left(1 - \frac{1}{p^s}\right) \prod_{q \in D} \left(1 - \frac{1}{q^s}\right)^{-1} = \sum_{n=1}^{+\infty} \frac{a_n}{n^s},$$

where  $\zeta_0(s)$  is the Riemann zeta function. Then  $\sum_{n=1}^{+\infty} a_n/n^s = (\sum_{m=1}^{+\infty} 1/m^s) \sum_{k=1}^{+\infty} c_k/k^s$  and

$$N(x) = \sum_{n \le x} a_n = \sum_{k \le x} c_k \left[ \frac{x}{k} \right] = x \sum_{k \le x} \frac{c_k}{k} + O\left( \sum_{k \le x} |c_k| \right)$$
$$= x \sum_{k=1}^{+\infty} \frac{c_k}{k} + O\left( x \sum_{k \ge x} \frac{|c_k|}{k} \right) + O\left( \sum_{k \le x} |c_k| \right).$$

From (2) we have

$$\log^{\gamma} x \sum_{k>\alpha} \frac{|c_k|}{k} \leq \sum_{k>\alpha} \frac{|c_k| \log^{\gamma} k}{k} = O(1)$$

and

$$\sum_{k \le x} |c_k| \le O(1) + \frac{x}{\log^{\gamma} x} \sum_{k \le x} \frac{|c_k| \log^{\gamma} k}{k} = O\left(\frac{x}{\log^{\gamma} x}\right).$$

Thus  $N(x)=x\sum_{k=1}^{+\infty} c_k/k + O(x/\log^{\gamma} x)$ .

We next show that (ii) and (iii) hold. Since  $\pi_0(x) \sim x/\log x$  we have

$$\lim_{n \to \infty} \frac{\pi_0(a_n)}{\pi_0(b_n)} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\pi_0(b_{n-1})}{\pi_0(a_n)} 2^{n/8} = 0.$$

From the fact that

$$\pi(x) \ge \pi_0(x) - \sum_{b_n \le x; n \text{ odd}} [(1 - \alpha) \{ \pi_0(b_n) - \pi_0(a_n) \}]$$
  
 
$$\ge \pi_0(x) - (1 - \alpha)\pi_0(x)$$

it is clear that

$$\liminf_{x \to +\infty} \frac{\pi(x)\log x}{x} = \liminf_{x \to +\infty} \frac{\pi(x)}{\pi_0(x)} \ge \alpha.$$

On the other hand

$$\begin{split} \pi(a_n) & \leq \pi_0(a_n) + K \sum_{k < n: k \text{ even}} 2^{k/8} \{ \pi_0(b_k) - \pi_0(a_k) \} \\ & \leq \pi_0(a_n) + K 2^{n/8} \pi_0(b_{n-1}). \end{split}$$

R. S. HALL

It follows then that  $\lim_{n\to\infty} \pi(a_n)/\pi_0(b_n)=0$  and we have (i), since

$$\lim_{x \to \infty} \inf \frac{\pi(x)}{\pi_0(x)} \le \lim_{n \to \infty; n \text{ odd}} \inf \frac{\pi(b_n)}{\pi_0(b_n)}$$

$$= \lim_{n \to \infty; n \text{ odd}} \inf \frac{\pi(a_n) + \alpha \{\pi_0(b_n) - \pi_0(a_n)\}}{\pi_0(b_n)} = \alpha.$$

If  $\beta < \infty$ , then

$$\pi(x) \le \pi_0(x) + \sum_{b_n \le x; n \text{ even}} (\beta - 1) \{ \pi_0(b_n) - \pi_0(a_n) \} \le \beta \pi_0(x).$$

Similarly, it follows that

$$\limsup_{x \to \infty} \frac{\pi(x)}{\pi_0(x)} \ge \limsup_{n \to \infty; n \text{ even}} \frac{\pi(b_n)}{\pi_0(b_n)}$$

$$= \limsup_{n \to \infty; n \text{ even}} \frac{\pi(a_n) + \beta \{\pi_0(b_n) - \pi_0(a_n)\}}{\pi_0(b_n)} = \beta.$$

Thus,  $\limsup_{x\to\infty} \pi(x)\log x/x = \beta$ . If  $\beta = \infty$ , then

$$\begin{split} \limsup_{x \to \infty} \frac{\pi(x)}{\pi_0(x)} & \geqq \limsup_{n \to \infty} \frac{\pi(b_n)}{\pi_0(b_n)} \\ & = \limsup_{n \to \infty} \frac{\pi(a_n) + (2^{n/8} + 1) \{\pi_0(b_n) - \pi_0(a_n)\}}{\pi_0(b_n)} = \infty. \end{split}$$

This completes the proof.

A slightly more complicated argument shows that (ii) and (iii) can hold for systems in which N(x)=Ax+O(x/g(x)) provided  $g(x)=o(\log x)$ . Details may be found in [3].

## REFERENCES

- 1. P. T. Bateman and H. G. Diamond, Asymptotic distribution of Beurling's generalized prime numbers, Studies in Number Theory, vol. 6, Math. Assoc. Amer., Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 152-210. MR 39 #4105.
- 2. A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I, Acta Math. 68 (1937), 255-291.
- 3. R. S. Hall, Theorems about Beurling's generalized primes and the associated zeta function, Ph.D. Thesis, University of Illinois, Urbana, Ill., 1967.

DEPARTMENT OF MATHEMATICS, WILLAMETTE UNIVERSITY, SALEM, OREGON 97301