Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the zeros of certain confluent hypergeometric functions
HTML articles powered by AMS MathViewer

by P. Wynn PDF
Proc. Amer. Math. Soc. 40 (1973), 173-182 Request permission

Abstract:

The theory of continued fractions is used to derive the following results which hold for $- \tfrac {1}{2} < \alpha < \infty$: (1) If \[ _1{F_1}(\alpha ;2\alpha + 1;z) = 0\quad [{}_1{F_1}(\alpha + 1;2\alpha + 1;z) = 0]\] then $\operatorname {Re} (z) > 0[ < 0]$. (It is deduced from this result that if ${I_{{\alpha ^{ - 1/2}}}}(z) + {I_{{\alpha ^{ + 1/2}}}}(z) = 0$ then $\operatorname {Re} (z) > 0$, and it is shown that if $\alpha$ is an integer, an unbounded number of roots of this equation exists.) (2) The roots of the equ tions \[ _1{F_1}(\alpha ;2\alpha ;z){ = _1}{F_1}(\alpha ;2\alpha + 1;z)\] and \[ _1{F_1}(\alpha ;2\alpha ;z){ = _1}{F_1}(\alpha + 1;2\alpha + 1;z)\] are identical, pure imaginary, symmetrically distributed about the origin and unbounded in number. (3) Let ${C_n}(z)(n = 0,1, \cdots )$ be the successive convergents of the continued fraction associated with $g(z){ = _1}{F_1}(\alpha ;2\alpha ;z){/_1}{F_1}(\alpha ;2\alpha + 1;z)$. Te oots $z = iy_v^{(n)}(v = 1,2, \cdots )$ of the eqation$g(z) = {C_n}(z)$ have the same properties as those described in (2). Furthermore, they interlace: subject to a suitable ordering, $y_v^{(n)} < y_v^{(n + 1)} < y_{v + 1}^{(n)}(v = 1,2, \cdots )$. (A special case of this result concerns the function ${e^z}$ and the convergents of its continued fraction expansion, and is an extension of the forula ${e^{2iv\pi }} = 1(v = 1,2, \cdots )$.)
References
    A. Erdelyi et al., Higher transcendental functions. The hypergeometric function, Legendre functions, vol. 1, McGraw-Hill, New York, 1953. MR 15, 419.
  • Oskar Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957 (German). MR 0085349
  • H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
  • T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), no. 4, J1–J122 (French). MR 1508159
  • C. F. Gauss, Disquisitiones generales circa seriem infinitan, Commentationes societatis scientiarum Goettingensis recentiores 2 (1813),1-46; Werke, 3 (1876),123-162.
  • L. S. Pontryagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. (2) 1 (1955), 95–110. MR 0073686
  • E. E. Kummer, De integralibus quibisdam definitis et seriebus infinitis, J. Reine Angew. Math. 17 (1837), 228-242.
  • G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
  • A. Hurwitz, Ueber die Nulstellen der Bessel’sche Funktion, Math. Ann. 33 (1889), 246-266. J. L. Lagrange, Sur l’usage des fractions continues dans le calcul intégral, Nouveaux mémoires de l’académie royale des sciences et belles-lettres de Berlin 7 (1776), 236-264; Oeuvres 4 (1869), 301-332. G. Darboux, Sur les développements en série des fonctions d’une seule variable, J. Math. Pures Appl., 2 (1876), 291-312.
  • H. Padé, Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d’introduction à la théorie des fractions continues algébriques, Ann. Sci. École Norm. Sup. (3) 16 (1899), 395–426 (French). MR 1508972
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A30
  • Retrieve articles in all journals with MSC: 33A30
Additional Information
  • © Copyright 1973 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 40 (1973), 173-182
  • MSC: Primary 33A30
  • DOI: https://doi.org/10.1090/S0002-9939-1973-0318529-7
  • MathSciNet review: 0318529