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Abstract.    The theory of continued fractions is used to derive

the following results which hold for — |<a<oo: (1) If

iZ^oc; 2a + 1 ; z) = 0    [^(a + 1 ; 2a + 1 ; z) = 0]

then Re(z)>0 [<0]. (It is deduced from this result that if/a_1/s(r) +

Za,w2(z)=0 then Re(z)>0, and it is shown that if a is an integer,

an unbounded number of roots of this equation exists.) (2) The

roots of the equations

jZ^ia; 2a; z) = if^a; 2a + 1 ; z)

and
,F,(fli; 2a; z) = ,F1(a + 1 ; 2a + 1 ; z)

are identical, pure imaginary, symmetrically distributed about the

origin and unbounded in number. (3) Let Cn(z) (n=0, 1, • • •) be the

successive convergents of the continued fraction associated with

g(z)=1F1(oL;2a;z)llF1(a.;2a + l;z). The roots z=;><,"> (v = l,

2, ■ ■ -)of the equation,f(z) = C„(z) have the same properties as those

described in (2). Furthermore, they interlace: subject to a suitable

ordering, y[n) <y[n+1) <yi+x (»' = 1,2, • • •). (A special case of this

result concerns the function e' and the convergents of its continued

fraction expansion, and is an extension of the formula e2ivn = i

(»=1,2, ■•).)

A number of results concerning the location of the zeros of certain

special confluent hypergeometric functions have been obtained by in-

vestigating the behaviour of integral expressions involving the functions in

question and, in the case of real argument and parameters, by the use of

Sturm sequences (for a survey of known theory and associated references

to the literature see [1, §6.16]). In this paper we introduce a new method,

based upon the use of continued fractions, to establish that the zeros of

certain confluent hypergeometric functions lie in a fixed half-plane and that

those of certain combinations of these functions lie on the imaginary axis.

(The reader is referred for the analytic theory of continued fractions to the

standard works [2] and [3].)
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The results of which we make use are as follows:

Theorem A (Stieltjes [4, Notes 3 and 4]).    The function S(z) generates

a nonterminating continued fraction of the form

n\ Ux   u%z        uvz

1+1+        1+

in which

(2) 0 < uv < co    (v—1,2, •••),       limuv = 0
V=0O

if and only if S(z)=2Zo MJ(l+ztv) where t0 = 0, Mo^0, 0<rv<£<oo,

Afv>0 (v=l,2,- ■ ■), J^=0My=ux, the {/„} being distinct; S(z) is then

regular at the origin, is meromorphic in any finite region of the z-plane, and

has simple poles at the points z=—ty1 (v=l, 2, • • •) on the negative real

axis. Expansion (1) converges, in particular, in the neighbourhood of the

origin to S(z).

Theorem B (Gauss [5]; see also [3, §89] and [2, §91]). (i) When y + vj±0

(v=0, 1, • • •) the function

a + t  z
^(a;r;z) = î(n^l

v=0 W=0  y  +TÍv=0 Vr=Ô y  + T¡ Vl

is an entire function.

(ii) The function f(z) = xFx(a.; y; z)/1£1(a; y+l; z) generates the cor-

responding continued fraction

vxz v2z        vvz
(3) va H-• • • — ■ • •w °      1+ 1+        1 +

where v0=l,

(« + v - D

y2v~1      (y + 2v - 2)(y + 2v - 1)

(v= 1,2, •••)
(y — oc + v)

V'1" ~ ~ (y + 2v - l)(y + 2v)

which converges uniformly to f(z) in any finite region of the z-plane from

which the zeros of the function xFx(a.; y+1 ; z) have been excluded.

Theorem C (Pontrjagin [6, §1]).    Let Pm,n(z, w) be a polynomial in the

two variables z and w of the form

m       n

Pm.n(z, w) = 2 2 c^z*wT       (\^m,n<co)

v=0 r=0

where each of the four sets of numbers c0 „ cm r (t=0, 1, • • • , n), cv „, cv „

(v = 0, 1, • • • , m) contains at least one nonzero member. Then if cm,„=0
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[c0n=0] the equation Pmn(z, ez)=0 has an unbounded number of roots with

arbitrarily large positive [negative] real part.

Our first main result is

Theorem 1.   z*/—|<a<oo and

(i) xFx(a.; 2a+l; z)=0 then Re(z)>0;

(ii) xFx(ol+I ;2a.+1 ; z)=0 then Re(z)<0.

Proof.    Setting y = 2a, it follows from clause (ii) of Theorem B that

when — £<a<oo the function

(4) g(z) = xFx(<x; 2a; z)/1F1(a; 2a + 1 ; z)

generates the corresponding continued fraction (3) with v0=l, v2v_x —

— v2v=l/{2(2oi+2v—l)} (v=l, 2, • • •). The even part of expansion (3)

(i.e. (see [3, §4]) that continued fraction whose successive convergents are

those of even order of expansion (3)) then becomes

(5Ï az       uxz2u2z2       uv_xz2

1 - az+ 1+   1+ 1 +
where

1
a =

(6)
2(2a + 1)

4(2a + 2v - l)(2a + 2v + 1)
(v « 1, 2, • • •)■

From clause (ii) of Theorem B, expansion (5) converges tog(z) in particular

in the neighbourhood of the origin. The coefficients uv (v=l, 2, • • ■) of

formulae (6) satisfy conditions (2). Hence, from Theorem A, the expansion

1+1+ 1+

converges in the neighbourhood of the origin to S(z)=2Xo ^v/(l+z20

where the numbers Mv, tv (v=0, 1, • • •) are as described in that theorem.

In the neighbourhood of the origin

(7) g(z) = 1 + az/(l -az + z2S(z2))

and, by analytic continuation, this relationship holds throughout any

finite region of the z-plane.

The functions az and 1 —az+z2S(z2) are analytic when Re(z)<0, and the

only singularities of the function S(z2) upon the line Re(z)=0 are simple

poles. Furthermore, since Re(z^)^0, Re( —a)<0, Re{z,S(z2)}_0 when
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Re(z)^0 (z^O), it follows that the function z l—a+zS(z2) is never zero

when Re(z)_0. Hence the function g(z) of formula (4) is analytic when

Re(z)^0.

Now assume that xFx(ol; 2a+1 ; z)=0 for some finite value of z such that

Re(z)^0. Sinceg(z) is analytic for Re(z)^0, it follows that 1F1(a; 2a; z)=0

also. But [1, §6.4]

(8) 21F1(a; 2a; z) - XFX(*; 2a + 1 ; z) = ^(a + 1 ; 2a + 1 ; z).

Hence, for this value of z, jF^a+l ; 2a+l ; z)=0. Since [1, §6.4]

(9) ^1F1(a;2a;z) = i1F1(a+l;2a + 1 ; z)        (-1 < a < oo)

(where Q, now and subsequently, denotes d/dz) it follows that we have

shown that the function xFx(cn; 2a; z) and its first derivative vanish for the

value of z in question. Using the homogeneous second order differential

equation satisfied by the function 1F1(a;2a;z) [1, §6.3] it can then be

shown that all derivatives of this function vanish at the point in question,

and hence that xFx(a; 2a; z)=0 identically. This is manifestly untrue, the

initial assumption is false and, indeed, if xFx(ol; 2a+l; z)=0then Re(z)>0.

The second result of the theorem is an immediate consequence of the

formula [7], [1, §6.3]

(10) xFx(a;c;z) = e\Fx(c-a;c;-z)       (c # 0, -1, • ■ •)•

Theorem 1 says nothing concerning the existence of the points referred

to. Indeed, it is clear that when a=0 such points do not exist. We therefore

describe two special cases in which the existence of such points can be

established and in which something further can be said concerning their

distribution.

Theorem 2. Let n_ 1 be a fixed finite integer. There exists an unbounded

number of values of z having arbitrarily large

(i) positive real part for which xFx(n; 2n+l ; z)=0,

(ii) negative real part for which xFx(n+1 ; 2n+1 ; z)=0.

Proof.   Set

(11) Vn(z) = z-
v=0 "•'

As is easily verified, we have in succession

xFx(n; 2n + 1; z) = ((2n)\/(n - l)!)^""V„(z),

(12) ^"-V.(z) = (-ir-1Jra"{p„(zK - qn(z)}

n-l.
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where

..      "^   (2n-v- 1)!    ,

(13) ^âvlÇn - v - 1)1 n

A (2n -*-!)!   v
qn(z) =  > -z .

Since a term involving z" occurs in the expression contained in braces in

formula (12), but a term in ezzn is missing, it follows from Theorem C

that this expression has an unbounded number of zeros with arbitrarily

large positive real part. That the zeros of the function xFx(n; 2n+l;z)

are confined to the half-plane Re(z)>0 is a consequence of Theorem 1.

The second result of the theorem is proved in a similar way, noting that

xFx(n +1 ; 2/j+l; z)=((2n)!/«!)^nvn_i(z). We note in passing that in the

notation of formula (11)

®n-\n(z) = z'-n[Aï-\(n + v)\rpv+x(z)}]ln\ j '■

®nWn_x(z) = z-[A"0{(n + v - 1)! Vv-i(z)}]/(" - !)?j

where the difference operator A is defined by &.°f(v)=f(v) (v=0, I, • • •),

Ar+1/(v) = AJ(v) - AJ(v +1)       (v, r = 0, 1, • • ■)
and

ArJ(v) = A7(0)       (r = 0, 1, • • •)•

The results of Theorems 1 and 2 may be presented in terms of Bessel

functions:

Theorem 3. If, when —|<a<oo, Ix-X/2(z)+Ix+x/2(z)=0 then (apart

from the case z=0 when a>|) Re(z)<0; furthermore, when a^ 1 is a finite

positive integer, this equation has an unbounded number of roots with

arbitrarily large negative real part.

Proof.    We have [1, §6.9.1]

(14) ^(a; 2a; z) = (i)1/2""r(a + Wn{(\z)w^Ix_m(\z)},

and [8, §3.71]

(15) ®{z"2-*Ix_m(z)} = z,/2-%,+1/2(z).

With the help of these two equations and formula (9), we derive

h+vti.2) + Ta-m(z)

= (for^e-m* + i))tFi(.<* + 1 ; 2a + 1 ; 2z)        (-A < a < oo).

The first result of the theorem follows immediately from clause (ii) of

Theorem 1.
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The second result may be deduced from Theorem 2. It may also, with the

help of Theorem C, be deduced from first principles using the fact [8,

§3.71] that when a_l is a finite integer

/«-i/aOO = (e222^,(2z)r - 2(-l)r<M2z)r)/{ez(2zry(27Tz)}
1        r=0 r=0 '/

where

^«.r J! {(2" - O2 - (2a - l)2} {(a- r- l)!4a-r-1}

(r = 0, l,--,a- 1).
Our second main result is

Theorem 4.    Let — |<a<oo. F/;e roo/s o/rAe equations

(16) iF^a; 2a; z) = ^(a; 2a + 1 ; z),

(17) jF^a; 2a; z) = ^(a + 1 ; 2a + 1 ; z),

are identical, pure imaginary, symmetrically distributed about the origin,

and unbounded in number.

Proof.    From formulae (4) and (7), we have

2C/ 8,      1 - g(z) + azg(z)
z o(z ) = -

US) g(z)-'

iFt(q;2a+ l;z) + (az— 1)1F1(a;2a;z)

xFx(a ; 2a ; z) - jF^a ; 2a + 1 ; z)

where a=l/{2(2a+l)}. Setting

h(z) = z2x{xFx(a; 2a; z) - xFx(a; 2a + 1 ; z)}

and using [1, §6.4], it is easily verified that ^/i(z) = |z2!"1F1(a+1 ; 2a+l; z).

Hence, from equation (8),

z^F^a; 2a; z) = 2S>/i(z) - h(z),

hz2\Fx(o.; 2a + 1 ; z) = 3h{z) - h(z),

and formula (18) may be written as z25,(z2) = (2az^A(z)-(l +az)h(z))/h(z).

The expressions in the numerator and denominator of the fraction upon

the right-hand side of this equation represent entire functions. These

functions do not vanish for the same value of z, for if they were to do so,

the function xFx(ol ; 2cn; z) and its first derivative ^xFx(a.+ l; 2a+l; z)

would also vanish simultaneously, implying that the former is identically

zero. It was shown in the proof of Theorem 1 that the function S(z2) is

analytic for Re(z)#0, and that its poles are unbounded in number, pure
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imaginary and symmetrically distributed about the origin. The poles of

S(z2) occur at the zeros of h(z). We have disposed of what has to be proved

concerning equation (16).

That equations (16) and (17) have identical roots follows immediately

from equation (10).

The results of Theorem 4 may, with the help of relationships (14) and

(15), also be presented in terms of Bessel functions. However, the sole

product of this change of notation is that, if 0</3<oo, the zeros of Jß(z)

are real, symmetrically distributed about the origin, and unbounded in

number, a result which is in any case well known to hold for — 1 ̂ ß< co

[9], [8, §15.27].

Theorem 5. Let the function g(z) and the numbers a and uv(v=l,2, • • •)

be as defined in Theorem 1. Set

C0(z)=l, Cx(z) = I + azl(l - az),

(19) az       uxz2       un_xz2
C„(z) = l+---Ï-^-       (n - 2, 3, • • •)•

1 — az+ 1+ 1

Then for afinite integer n^.0, the roots z=iy[n) (v=0, 1, ■ • •) of the equation

(20) g(z) = Cn(z)

are pure imaginary, symmetrically distributed about the origin and unbounded

in number. One of these roots is at the origin, the rest are bounded away from

it. Furthermore, these roots interlace: if the roots on the nonnegative im-

aginary axis are ordered according to the scheme y0n)=0, y[n> <y2n) <• ■ ■ ,

we ImeyF<&»></& (»-1,2, •• •)■

Proof.    We first remark that g(0) = C„(0)=l: equation (20) has the

root z=0.

From Theorem A, the continued fraction

wr., ur.,z        ur. vz4r+l "r+2

1+      1+ 1 +

converges in the neighbourhood of the origin to the function

,2,     M(t)

S<"(z) = t -^-r-
vto 1 + zt[r)

where«0r,=0,M¿r,^0,0<---<4r)<íír,<£(r,<oo,A/ír,>0(i'=l,2,---),

2vLo MlT)=ur+x<oo. The function 5(r)(z) has simple poles at the points

z=xir) = -lltlr) (r=l,2, •••) where, setting Ar(r»=-l/£,r,, • • -<4r)<

4r)<^<r,<0. For real values of z^x{vr) (v=l, 2, ■ • •) we have

9SM(z)=-y   M    v,,2<0.
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For real values of z, the function S(r)(z) is real valued, and is positive

for nonnegative values of z; between its successive poles its gradient is

negative. It follows that exactly one zero z—x[T) of SW)(z) lies between each

pair of neighbouring poles of this function: subject to a suitable ordering,

x[Tlx<x{vr)<x\r) (v=l, 2, • • •)• The functions {S{r)(z)} satisfy the equation

5"-»(z)-«r+i/(l+^(r+1)(z))-Thepoles{4r+1,}of5'"-+l>(z)correspondtothe

zeros of S^(z): we have x[rlx<x[r+1)<x[T) (v=l,2,-- ■)■

In conjunction with formulae (19), we have

g(z) =

2 2 2
uxz u„_xz' UJZ

1-AZ+1+ 1+      1   + Z2S(n,(z2) '

When 5(n)(z2)=oo, equation (20) is satisfied. This occurs when zi=x{")

(»-1,2, •••), i.e. when z=±iy[n) (v=l,2,---) where y[n)*=-x[n)

(v= 1,2, • • •)• The stated properties of the numbers {y(vn)} follow from those

already derived for the numbers {x[n>}.

It is clear that the argument used in the above proof can be applied to

derive a similar result concerning any function which generates a continued

fraction having a tail which is of the form described in Theorem A, or

which has a similar form.

Corollary. Let Cn(z) (0—\n< oo) be the nth convergent of the continued

fraction expansion [10], [2, §48], [3, §91]

z        z2/12z2/60       z2/{A(Av2 - 1)}
(21) 1 +

1 - \z+   1+    1+ 1 +

ofez (or, equivalently: let Cn(z) be the Padé quotient Rn,n(z) derived from the

power series expansion of ez) ; then the roots of the equation

(22) e* = Cn(z)

possess all the properties of those relating to equation (20) described in

Theorem 5.

Proof. As a tends to zero, the function g(z) of formula (4) tends to

$(ez +1), and the continued fraction (5) tends to the form (21) in which the

partial numerator z is replaced by \z. We denote the successive convergents

of this expansion by Cn(z) (n=0, 1, • • •). Theorem 5 then concerns the

equation |(ez+l) = C„(z). This equation may be rearranged in the form

(22).
The above corollary may be regarded as being an extension of the

result e2,v*=l (v=±0, 1, • • •), and Theorem 5 as being an extension of

this corollary.

The successive convergents of expansion (21) may be expressed in closed
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form [11], [12]: in the notation of formulae (13), we have

(23) Cn(z) = (Pn(-z) + qn(z))l(Pn(z) + qn(-z))       (n - », 1, • • •)■

Equation (22), expressed in the form e'v=Cn(iy), involves complex

numbers. However, by rewriting it in a form involving (eiy— l)j(eiy+1) and

using formulae (13) and (23), we may derive an equation involving real

numbers only; it is

(24) t&nQy) = (Xn(y) + <»n(y))l(Vn(.v) + cr„(y))        (n = 0, I, • • •)

where

_[("^,/2]   (2n-2v-2)!(-ir       2v+1

XnW~     ¿   (2v+l)\(n-2v-2)\ny      '

>Áy) _^2H2n-2v-2)\(-iy   /y+1

v=0 (2v + l)l(n -2v - l)\

ju^/s] (2h - 2v-!)!(-1)"    2/

VnW        ào     (2v)\(n-2v-l)\n *   '

.        [K'2] (2n-2v- l)!(-l)v   .,

°n{y) = ¿ —cTTTT-77— ^ •
í=o       (2r)! (n — 2v)\

Denoting the expression upon the right-hand side of equation (23) by

in(y) we have, for n fixed and large values of y, £n(y)~—n(n+l)ly when

n is even, and f„(j)~>'/{«(«+l)} when n is odd. Denoting the root of

equation (24) in the interval ((2r— 1 )ir, (2r+ l)n) by ynT we have, for large

values of r, ynr~2m when n is even and yn r~(2r+l)7r when n is odd.
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