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SUBALGEBRAS  OF  DOUGLAS  ALGEBRAS

KEVIN   CLANCEY  AND   WAYNE   CUTRER

Abstract. A closed subalgebra si of Va is called a Douglas

algebra in case sí is an algebra generated by Z/00 and a set of inverses

of inner functions. It is shown that if the Douglas algebra ^contains

properly //°° + C, then there is another Douglas algebra si' such that

H^ + C^s/'^s/. Some results on subalgebras are also given for

algebras generated by Z/00 and a function of the form fB, where/is

in //°° and B is an infinite Blaschke product.

Let Hm be the algebra of bounded functions analytic in the unit disk D.

The notation Lx will denote the algebra of bounded Lebesgue measurable

functions on the unit circle. The space of continuous functions on the unit

circle will be denoted by C. This note is concerned with closed subalgebras

si of L00 that contain ZY°°. The maximal ideal space of the algebra s/ will

be denoted by M^.

A closed subalgebra si of Lx is called a Douglas algebra in case si is

the algebra Hx [£] generated by zY°° and a set 2 of inverses of inner

functions. In the special case where £ contains the inverse of a single

inner function q> the notation Hx [<p] is used for the Douglas algebra

7T°[E].
Douglas [2] has conjectured that every closed algebra si satisfying

ZY°°<= si<=- Va is a Douglas algebra. A recent discussion of this problem

is contained in Sarason [5].

Douglas has also asked whether every subalgebra si of L°° satisfying

H^ + C^si contains properly a subalgebra si' satisfying H^ + C^si'.

We give an affirmative answer to this question when si is a Douglas

algebra.

Our main result is:

Theorem 1. Let si=Hx[L] be a Douglas algebra which properly

contains H^ + C. There exists another Douglas algebra si' such that

Hœ + C$si'5si.

The above theorem makes it obvious that Douglas's second question is

weaker than the first.
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1. Proof of Theorem 1. Fortunately, if a subalgebra of £°° properly

contains £F°, then it contains £T°-t-C (see, Hoffman [4, p. 193]). There-

fore, if 99 is a nonconstant inner function, then Hx[q3] contains Hx + C.

Clearly, Hx'[(p]=Hœ + C whenever <p is a nonconstant finite Blaschke

product. The converse of this last statement is true; that is, if 9? is inner

and H™ [<p] = Hœ + C, then <p must be a nonconstant finite Blaschke

product. To see this, observe that MH™+C=MH«>~D (Hoffman [4, p.

207, Exercise 1]), and when //0O[ç3]=//0O + C, then \<p(y)\ = l for every y

in MH<a+c (here, <p denotes the Gelfand transform of cp). This is impossible

since if tp is not a finite Blaschke product, then there are always points

y in MH<v+c where <p(y)=0.

A theorem of Frostman (see, e.g. Hoffman [4, p. 175]) permits one to

conclude that for some small X in D the function Sx=(X — <p)(l —Xqi)~x is a

Blaschke product. This result and the remarks of the preceding paragraph

show that it suffices to prove Theorem 1 in the case where the algebra s4

is //°°[£]; here, B is an infinite Blaschke product.

Douglas and Rudin [3] prove that, for 99 inner, MH^[^ is the set

A'v = {7:l^(y)l = l' y e Mfl»}. Since the homomorphisms of //°° have

unique Hahn-Banach (norm-preserving) extensions to linear functionals

on L™, it is easily seen that whenever the algebras sé and sé' satisfy

H^^sé'^sé^L™, then M^M^, (see, Hoffman [4, p. 182]).

If the Blaschke product £0 divides B, then Hx'[B0]<= FT'[£]. In order

to complete the proof of Theorem 1 it suffices to show that for every

infinite Blaschke product B there is an infinite Blaschke product B0

dividing B such that £B5 KB . The key to showing this is the following

lemma concerning "strong" exponential sequences.

Lemma 1. Let {z^^fl and assume lim sup^^z^^l. Then there

exists a subsequence {zn)f=x such that

(1) inf
k

n
î'=i;j#jfc 1

> 0.

Proof. Let 0<c<l and let {p^^Li be any infinite strictly increasing

sequence of positive integers. Set zn=zx and inductively choose (z„ }k=1

such that

(2) 1 - \znkJ < cM+1[l - \zj].

For j>k, 1 — |z„.|<c!,'+-+p*+1[l — |z„J], which implies

|z„,l - l*J =; [1 - c"i+-+-«][l - |zj].
Further,

1 - \zj \zj < 1 - |zj + 1 - \zj <[l + c"+-+"][l - \znJ].
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Using the estimate |a-/S|/|l-ät/i|^(|a|-|.j8|)/(l-|a| \ß\), for a, ß e D,

it follows that

n ;■'■■•',£ n
i>*ul ZniZnk\) ,>;c[l \zn¡\ \zr,

|, _       cPi+:. + p^J ^ _       ̂

i>k^1    '    c ' i>k\l  "T <-

Fory'<rc, one can obtain similarly

n^^-N n
¿<*m1 ZJ»,Z7!fcl' i<*"-l    T   C

,11 - c"W

Next select an increasing sequence {p¡}jlx of nonnegative integers such

that (1 -cp')/(l +cp>) = {(l -cj)/(l +c0}1/3'. If the z„. are chosen in accord-

ance with (2) using this sequence {/>,}, then

CO Í

infnf     •" 1^ n -^- > o.
k j5tfcl|i - a^zaJJ     í=1 i + c3

This completes the proof.

The proof of Lemma 1 is fashioned after Newman's proof that an

exponential sequence is an interpolating sequence (Hoffman [4, p. 203]).

Now we complete the proof of Theorem 1.

Select a subsequence {zn}JLx of the zeros of B satisfying (1) and

IfLx k[l-\z„\]<oo. For k=l, 2, ■ ■ • , let

ei -.       z™-   z      z«"-
*(z) = :

lZrc*l  1 Zn*Z

and set B'=UZi ß*. Factor B' = B„B0, where fi.=n?-i ß2lJ and Z30=

ll"=iß2P-i- Finally form ß0=n?=i [^„-il2""1-  Let y be a jjoint  in

MH<*~D and in the closure of {zn¡ }p=x. Since (1) holds, then \B0 (y)|>0

and, clearly, \Ê0(y)\}>\Bo(y)\; moreover, B'(y)=0.

Fix a>l and define

CO Q

C, = il (Ô2i-i)20-a>    and    F5 = O (ß^)2"--'-
J=í+1 ¿=1

From the identity B^C^B^P^, it follows that

B2<"\y)CQ(y) = K<V)P&)>

Then |/J0(y)|2«-1=|/}0'"(y)|>0 and, therefore, \B0(y)\>l. It follows that

MHoo[B]5MH»[iBo] and, therefore, //co + C5ZY00[/i0]5//0O[5]. This ends

the proof of Theorem 1.
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2. In this section we will briefly discuss algebras generated by //°° and

a function fB where fis in //°° and B is an infinite Blaschke product. A

major obstacle to studying these algebras is a lack of working knowledge

of whether the function/£ belongs to Hx+ C (Sarason in [6, Theorem 2]

has given necessary and sufficient conditions for fB to be in H^ + C in

terms of the compression of the operator of multiplication by f onto the

star invariant H2QBH2). We will consider a fairly obvious case.

Let {ak}k=1 be the zeros of B and assume lim sup\ f(ak)\ ¿¿0. The function

fB is not in H^ + C. To see this, observe that if \f(akJ\^ô>0 on the

infinite subsequence {akJ™=x of the zeros of B, then for every y in the

closure of {akJ%=1 in M^ we have \f(y)\^0>0. IffB is in Hx + C, then

fB=g+p where g is in //°° and p is in C. Since |£| = 1, then f=Bg+Bp.

It follows that/must vanish on MH<*>+0 where B does, contradicting the

fact that |/(y)|=£<? for some y where B vanishes.

We can prove the following analogue of Theorem 1 for the algebras

Hx[fB].

Proposition 1. Let B be an infinite Blaschke product with zero

sequence {ak}k=1. Let f be in Hx and assume lim sup\f(ak)\^0, then there

is a subalgebra of H™[fB] of the form Hx[fB0], where B0 is a Blaschke

product dividing B, satisfying Hœ + C^ //°° [/£„] £ £T [fB].

Proof. Clearly if B' is a Blaschke product dividing B, then H°° [fB'] c

HK [fB] and we can, therefore, assume that lim inf \f(ak)\7^0. It is possible

(by the techniques in §1) to factor B=B0Be such that B0 and Be are

infinite Blaschke products and such that Iim^Ä,,^)^!, where {ck}k=x is

an infinite subsequence of the zeros of Be.

The following inclusions exist:

«'[fiel 5 H*>[B]

Hx + C$ Hx[fB0] c //"[/£].

Let y be a point in MH<*>+C and in the closure of {c^^. If y is in

MHocl/B], then (fßf(y)E(y) = (fBBf(y) = f(y) and since ß(y)=0 and
f(y)^Q a contradiction results. It follows that y is not in ¥fl«[fi].

Clearly y is in MH^[Ë j, hence, y is in MH^[fß j. This implies //°°[/£0]5

//°° [Z?0] and completes the proof.

Remarks. If the zero set {ak}k=x of £ is an interpolating sequence,

then it is possible to combine the results of Clark [7, Theorem 2.1] and

Sarason [6, Theorem 2] to obtain that fB is in H^ + C if and only if

lim/(aft)=0. Moreover, in this case the zero set of B is the closure of
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{afc}£Li in MH°= (Hoffman [4, p. 206]). It follows that if

lim ¡nf |/(afc)| 5= 0,

then FT [/£]=//*[£]. To see this let y be in the zero set of £. If y is

multiplicative on H°°[fB], then (fB)*Ê(y)=f(y) and since f(y)^0 and
E(y)=0 a contradiction results. Therefore, B does not vanish on MH^ifSi

and it follows that B is in //°°[/£].

A similar argument can be used to show that if/£ is not in Hx + C and

the zeros of B form an interpolating sequence, then Hx[fB] contains a

Douglas algebra different from H^ + C. The authors have been unable to

decide, in this case, whether H°"[fB] is a Douglas algebra.

Added in proof. A recent result of Sarason can be used to show that

any algebra properly containing Hx + C contains an algebra generated

by Hx and the inverse of an infinite Blaschke product. This result, along

with the results in this paper, implies an affirmative answer to Douglas'

second question.
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