TWO ERGODIC THEOREMS FOR CONVEX COMBINATIONS OF COMMUTING ISOMETRIES¹

S. A. McGRATH

ABSTRACT. Let (X, \mathcal{F}, μ) be a measure space. In this paper we obtain L^p estimates for the supremum of the Cesàro averages of combinations of commuting isometries of $L^p(X, \mathcal{F}, \mu)$. In particular, we show that a convex combination of two invertible commuting isometries of $L^p(X, \mathcal{F}, \mu)$, p fixed, $1 , <math>p \ne 2$, admits of a dominated estimate with constant p/(p-1). We also show that a convex combination of an arbitrary number of commuting positive invertible isometries of $L^2(X, \mathcal{F}, \mu)$ admits of a dominated estimate with constant 2.

1. **Introduction.** Let (X, \mathcal{F}, μ) be a σ -finite measure space and let T be a linear operator mapping $L^p(X, \mathcal{F}, \mu)$ into $L^p(X, \mathcal{F}, \mu)$, p fixed, 1 . If there exists a constant <math>c > 0 such that

$$\int \sup_{n} \left| f, \frac{f+Tf}{2}, \cdots, \frac{f+Tf+\cdots+T^{n-1}f}{n} \right|^{p} d\mu \leq c^{p} \int |f|^{p} d\mu$$

for all $f \in L^p(X, \mathcal{F}, \mu)$, then we say that T admits of a dominated estimate with constant c. If the norm of T does not exceed 1, then we say that T is a contraction. We say that T is positive if it maps nonnegative functions to nonnegative functions.

The purpose of this paper is to obtain dominated estimates for certain convex combinations of commuting invertible isometries of $L^p(X, \mathcal{F}, \mu)$. In [5, pp. 368-371], A. Ionescu Tulcea showed that if T is an invertible isometry of $L^p(X, \mathcal{F}, \mu)$, $p \neq 2$, then it admits of a dominated estimate with constant p/(p-1). For the case p=2, she showed that a positive invertible isometry admits of a dominated estimate with constant 2. We extend these results by showing that if $p \neq 2$, a convex combination of two commuting invertible isometries of $L^p(X, \mathcal{F}, \mu)$ admits of a dominated estimate with

Received by the editors December 11, 1972.

AMS (MOS) subject classifications (1970). Primary 47A35; Secondary 28A65.

Key words and phrases. Dominated estimates of L^p contractions, positive contractions, convex combinations of commuting isometries, positive fixed functions, normal positive contractions, periodic isometries.

¹ This research is from the author's Ph.D. thesis, University of Minnesota, 1971, written under the supervision of Professor R. V. Chacon.

constant p/(p-1). In the case p=2, we show that a convex combination of an arbitrary number of commuting positive invertible isometries admits of a dominated estimate with constant 2 by obtaining this estimate for normal positive contractions. This last result generalizes a result due to E. M. Stein, who showed in [4, Theorem 2, p. 1896] that positive selfadjoint contractions admit of dominated estimates with constant 4.

2. **Preliminary theorems.** All estimates are obtained by applying the following results.

LEMMA 2.1. If T_n $(n=1, 2, \cdots)$ and T are contractions of $L^p(X, \mathcal{F}, \mu)$ such that T_n converges strongly to T, and such that each T_n admits of a dominated estimate with constant c, then T admits of a dominated estimate with constant c.

THEOREM 2.2. Let $(X_i, \mathcal{F}_i, \mu_i)$, $i=1, 2, \cdots, n$, be σ -finite measure spaces and let T_i be a positive contraction of $L^p(X_i, \mathcal{F}_i, \mu_i)$ into $L^p(X_{i+1}, \mathcal{F}_{i+1}, \mu_{i+1})$ for $i=1, 2, \cdots, n-1$. Let $h_i \in L^p(X_i, \mathcal{F}_i, \mu_i)$ be a positive function, $i=1, 2, \cdots, n$, such that (i) $T_i h_i \leq h_{i+1}$, (ii) $T_i^*(h_{i+1}^{p-1}) \leq h_i^{p-1}$, for $i=1, 2, \cdots, n-1$. Then we have

$$\sum_{i=1}^{n} \int \sup \left| f_{i}, \frac{f_{i} + T_{i-1}f_{i-1}}{2}, \cdots, \frac{f_{i} + T_{i-1}f_{i-1} + \cdots + T_{i-1}T_{i-2} \cdots T_{1}f_{1}}{i} \right|^{p} d\mu_{i}$$

$$\leq \left(\frac{p}{p-1} \right)^{p} \sum_{i=1}^{n} \int |f_{i}|^{p} d\mu_{i}$$

where $f_i \in L^p(X_i, \mathcal{F}_i, \mu_i)$.

A slightly more general statement of this theorem and its proof can be found in [1, Theorem 2.1, p. 612].

COROLLARY 2.3. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let T be a positive contraction of $L^p(X, \mathcal{F}, \mu)$. Suppose there exists a positive function $h \in L^p(X, \mathcal{F}, \mu)$ such that either (i) Th = h, or (ii) $Th \leq h$ and $T^*(h^{p-1}) \leq h^{p-1}$. Then T admits of a dominated estimate with constant p/(p-1).

PROOF. If h satisfies condition (ii) then the corollary follows from Theorem 2.2 upon setting $(X_i, \mathcal{F}_i, \mu_i) = (X, \mathcal{F}, \mu)$, $T_i = T$, $h_i = h$, and $f_i = f$ for $i = 1, 2, \dots, n$ and noting that

$$\int \sup_{n} \left| f, \frac{f+Tf}{2}, \cdots, \frac{f+Tf+\cdots+T^{n-1}f}{n} \right|^{p} d\mu$$

equals the limit of the Cesàro sums. It is shown in [2, Lemma 3.1, p. 267] that if h is a positive fixed function, i.e. h satisfies condition (i), then $T^*(h^{p-1})=h^{p-1}$. Thus if Th=h, then T admits of a dominated estimate with constant p/(p-1). Q.E.D.

3. Main results. We obtain the estimate for normal contractions first.

THEOREM 3.1. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let T be a positive normal contraction of $L^2(X, \mathcal{F}, \mu)$. Then T admits of a dominated estimate with constant 2.

PROOF. Suppose first that ||T|| < 1. Then $||T^*|| < 1$. Let f be any positive function in $L^2(X, \mathcal{F}, \mu)$ and let $g = \sum_{k=0}^{\infty} T^{*k}(f)$. Then g > 0, $g \in L^2(X, \mathcal{F}, \mu)$, and $T^*g \le g$. Let $h = \sum_{k=0}^{\infty} T^kg$. We have h > 0, $h \in L^2(X, \mathcal{F}, \mu)$, and $Th \le h$. Moreover, $T^*h \le h$ since $T^*h = \sum_{k=0}^{\infty} T^k(T^*g) \le \sum_{k=0}^{\infty} T^kg = h$. Thus T admits of a dominated estimate with constant 2 by Corollary 2.3.

Now suppose $||T|| \le 1$. Define $T_n = (1-2^{-n})T$, $n=1, 2, 3, \cdots$. Then each T_n admits of a dominated estimate with constant 2 and consequently so does T since T_n converges strongly to T. Q.E.D.

COROLLARY 3.2. Let T_i , $i=1, 2, \dots$, be positive invertible isometries of $L^2(X, \mathcal{F}, \mu)$ which commute, i.e. $T_iT_j=T_jT_i$ for all i, j. Then if $\alpha_i \ge 0$, $i=1, 2, \dots$ and $\sum_{i=1}^{\infty} \alpha_i \le 1$, the convex combination $S = \sum_{i=1}^{\infty} \alpha_i T_i$ admits of a dominated estimate with constant 2.

PROOF. Since $T_i^* = T_i^{-1}$, each T_i is normal and each T_i commutes with T_i^* , $j=1, 2, \cdots$. Consequently $S_n = \sum_{i=1}^n \alpha_i T_i$ is a positive normal contraction which admits of a dominated estimate by Theorem 3.1. Since $S_n \rightarrow S$ strongly, S also admits of a dominated estimate with constant 2 by Lemma 2.1. O.E.D.

We now consider the case of convex combinations of isometries of $L^p(X, \mathcal{F}, \mu)$, $p \neq 2$. To avoid technical difficulties we will assume that (X, \mathcal{F}, μ) is a Lebesgue space although the results are true in general.

LEMMA 3.3. Let (X, \mathcal{F}, μ) be a Lebesgue space and A, B invertible isometries of $L^p(X, \mathcal{F}, \mu)$, $p \neq 2$. Let $0 < \alpha < 1$ and $\beta = 1 - \alpha$. Then given n > 0 and $f \in L^p(X, \mathcal{F}, \mu)$, we have

$$\frac{1}{n}\sum_{i=0}^{n-1}\int\sup\left|A^{i}f,\frac{A^{i}f+SA(A^{i}f)}{2},\cdots,\frac{A^{i}f+SA(A^{i}f)+\cdots+S^{n-i-1}A^{n-i-1}(A^{i}f)}{n-i}\right|^{p}d\mu$$

$$\leq \left(\frac{p}{p-1}\right)^{p}\int|f|^{p}d\mu,$$

where $S = \alpha + \beta B A^{-1}$.

PROOF. It is a result essentially due to Banach (see [3, Theorem 3.1, p. 461] for a proof of a generalized version of Banach's theorem) that an invertible isometry U can be represented in the form $Uf(x)=f(\tau x) \cdot r(x)$,

where τ is an invertible measurable point transformation and r is a measurable function satisfying $|r|^p = d(\tau \mu)/d\mu$. Since BA^{-1} is an invertible isometry, it can be written in the form $BA^{-1}(f(x)) = f(\tau x) \cdot r(x)$. Defining $Uf(x) = f(\tau x)|r(x)|$, we see that U is a positive invertible isometry which dominates BA^{-1} in the sense that for $n = 1, 2, 3, \cdots$

$$U^n(|f(x)|) \ge |(BA^{-1})^n f(x)|$$

for any $f \in L^p(X, \mathcal{F}, \mu)$. Let $\{U_m\}$ be a sequence of positive periodic isometries which converges strongly to U. A proof that such a sequence exists can be found in [2, Lemma 4.3, p. 269]. A positive periodic isometry T of period n (T has period n if $T^n = I$) has a positive fixed function since if h > 0 then $h + Th + \cdots + T^{n-1}h$ is a positive fixed function of T. Thus each U_m has a positive fixed function g_m and consequently so does each operator $S_m = \alpha + \beta U_m$ since $\alpha + \beta = 1$. Letting $T_i = S_m$, for $i = 1, 2, \cdots, n-1$ in Theorem 2.2, we have

$$\sum_{i=1}^{n} \int \sup \left| f_{i}, \frac{f_{i} + S_{m} f_{i-1}}{2}, \cdots, \frac{f_{i} + S_{m} f_{i-1} + \cdots + S_{m}^{i-1} f_{1}}{i} \right|^{p} d\mu$$

$$\leq \left(\frac{p}{p-1} \right)^{p} \sum_{i=1}^{n} \int |f_{i}|^{p} d\mu,$$

where $f_i \in L^p(X, \mathcal{F}, \mu)$, $i=1, 2, \dots, n$. Since this inequality holds for each S_m , it follows that it holds with $D=\alpha+\beta U$ in place of S_m since S_m converges to D. Since D dominates S, we have

$$\sum_{i=1}^{n} \int \sup \left| f_{i}, \frac{f_{i} + Sf_{i-1}}{2}, \cdots, \frac{f_{i} + Sf_{i-1} + \cdots + S^{i-1}f_{1}}{i} \right|^{p} d\mu$$

$$\leq \left(\frac{p}{p-1} \right)^{p} \sum_{i=1}^{n} \int |f_{i}|^{p} d\mu$$

for $f_i \in L^p(X, \mathcal{F}, \mu)$, $i=1, 2, \dots, n$.

We let $f_i = A^{n-i}f$, $i = 1, 2, \dots, n$ in the preceding inequality and reverse the order of summation, getting

$$\frac{1}{n} \sum_{i=0}^{n-1} \int \sup \left| A^{i}f, \frac{A^{i}f + SA(A^{i}f)}{2}, \cdots, \frac{A^{i}f + SA(A^{i}f) + \cdots + S^{n-i-1}A^{n-i-1}(A^{i}f)}{n-i} \right|^{p} d\mu$$

$$\leq \left(\frac{p}{n-1} \right)^{p} \int |f|^{p} d\mu. \quad \text{Q.E.D.}$$

THEOREM 3.4. Let (X, \mathcal{F}, μ) be a Lebesgue space and A, B commuting invertible isometries of $L^p(X, \mathcal{F}, \mu)$, $p \neq 2$. Let $0 < \alpha < 1$ and $\beta = 1 - \alpha$. Then $\alpha A + \beta B$ admits of a dominated estimate with constant p/(p-1).

PROOF. Defining $S = \alpha + \beta B A^{-1}$ we have by the preceding lemma that

$$\frac{1}{n} \sum_{i=0}^{n-1} \int \sup \left| A^{i}f, \frac{A^{i}f + SA(A^{i}f)}{2}, \cdots, \frac{A^{i}f + \cdots + S^{n-i-1}A^{n-i-1}(A^{i}f)}{n-i} \right|^{p} d\mu \\
\leq \left(\frac{p}{p-1} \right)^{p} \int |f|^{p} d\mu$$

for any positive integer n and any $f \in L^p(X, \mathcal{F}, \mu)$. Since A and B commute we have

$$\frac{1}{n} \sum_{i=0}^{n-1} \int \sup \left| A^{i}f, \frac{A^{i}f + C(A^{i}f)}{2}, \cdots, \frac{A^{i}f + C(A^{i}f) + \cdots + C^{n-i-1}(A^{i}f)}{n-i} \right|^{p} d\mu \\
\leq \left(\frac{p}{p-1} \right)^{p} \int |f|^{p} d\mu,$$

where $C = \alpha A + \beta B$. Since A is an isometry it can be written in the form $Ag(x) = g(\tau x)r(x)$. It thus follows that

$$\int \sup \left| A^{i}f, \frac{A^{i}f + C(A^{i}f)}{2}, \cdots, \frac{A^{i}f + C(A^{i}f) + \cdots + C^{n-i-1}(A^{i}f)}{n-i} \right|^{p} d\mu$$

$$= \int \sup \left| A^{i}f, \frac{A^{i}f + A^{i}(Cf)}{2}, \cdots, \frac{A^{i}f + A^{i}(Cf) + \cdots + A^{i}(C^{n-i-1}f)}{n-i} \right|^{p} d\mu$$

$$= \int \left| A^{i} \left(\sup \left| f, \frac{f + Cf}{2}, \cdots, \frac{f + Cf + \cdots + C^{n-i-1}f}{n-i} \right| \right) \right|^{p} d\mu$$

$$= \int \sup \left| f, \frac{f + Cf}{2}, \cdots, \frac{f + Cf + \cdots + C^{n-i-1}f}{n-i} \right|^{p} d\mu$$

for $i=0, 1, \dots, n-1$. Thus for any n, we have

$$\frac{1}{n}\sum_{i=0}^{n-1}\int \sup \left|f,\frac{f+Cf}{2},\cdots,\frac{f+Cf+\cdots+C^{n-i-1}(f)}{n-i}\right|^p d\mu$$

$$\leq \left(\frac{p}{p-1}\right)^p \int |f|^p d\mu \quad \text{for any } f \in L^p(X,\mathscr{F},\mu).$$

Since the Cesàro sums do not exceed $(p/(p-1))^p \int |f|^p d\mu$, it follows that

$$\int \sup \left| f, \frac{f + Cf}{2}, \dots, \frac{f + Cf + \dots + C^{n-1}f}{n} \right|^p d\mu$$

$$\leq \left(\frac{p}{p-1} \right)^p \int |f|^p d\mu \quad \text{Q.E.D.}$$

It has been pointed out by M. A. Ackoglu that for contractions, the existence of a dominated estimate implies the almost everywhere existence of the Cesàro limit.

Hence we have:

THEOREM 3.5. Let (X, \mathcal{F}, μ) be a σ -finite measure space. Then the individual ergodic theorem holds for positive normal contractions of $L^2(X, \mathcal{F}, \mu)$ and for convex combinations of 2 invertible commuting isometries of $L^p(X, \mathcal{F}, \mu)$, $p \neq 2$.

BIBLIOGRAPHY

- 1. R. V. Chacon and S. A. McGrath, Estimates of positive contractions, Pacific J. Math. 30 (1969), 609-620. MR 40 #4421.
- 2. R. V. Chacon and J. Olsen, Dominated estimates of positive contractions, Proc. Amer. Math. Soc. 20 (1969), 266-271. MR 40 #1579.
- 3. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. MR 21 #3764.
- 4. E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894-1897. MR 24 #A1367.
- 5. A. Ionescu Tulcea, Ergodic properties of isometries in L^p spaces, 1 , Bull. Amer. Math. Soc. 70 (1964), 366-371. MR 34 #6026.

U.S. NAVAL ACADEMY, ANNAPOLIS, MARYLAND 21402