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INVERSION OF NORMAL OPERATORS
BY POLYNOMIAL INTERPOLATION!

J. C. DUNN

ABSTRACT. The inverse of a bounded normal linear operator
on a Hilbert space is uniformly approximated by a sequence of
Newton interpolation polynomials, provided the operator’s spec-
trum lies in either the right or left open half-planes.

1. Introduction. The following result is established in [1]:

THEOREM 1. Let # be a complex Hilbert space, and let A:H4'—H be
bounded, linear, and normal, with spectrum in the open right half-plane.
Furthermore, let {wy}:natural numbers—(0, 1] satisfy the conditions

4} limwy =0, D oy = .
N=1

N-wo

Then the corresponding recursive averaging process,

(2) (I)AV+1 = (1 - wN)(D.V + (UN[(I - A)q)N + I]7 (Dl = I»
generates a sequence of bounded linear operators ®, which converge uni-
formly to A7,

In a certain sense, this result is an extension of the classical Neumann
series representation of 47!, e.g., when wy=1, VN, (2) generates the
partial sums of the Neumann series, which converges to A7 iff |[[—A4| =
supyg—1ll(/—A)x|| <1. Here, we establish another relationship between
Theorem 1 and classical numerical analysis; specifically, we will prove
that when wy=1/(N+1), the corresponding polynomials in 4 generated by
(2) are formally identical to Newton interpolation polynomials for the real
function, f(x)=1/x.

2. Results. Let x,, h € R! and let x,=x,+ih, 0=<i=<N; then the corre-
sponding Nth degree forward Newton interpolation polynomial for
f:R'—-R! is given by:

a0 B (5]
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where Aify=731_, (=1 A= S (xip) (cf. [2]). Put f(x)=1/x, h=1,
and x;=i+1, 0<i<N; then
i —1Vi i+ (—1)(i — 1)+
A70=Z. ( 1);!' =‘l ( .1)(;+1?!_(‘ it
NG+ 1=) i+ 150G+ =H G+ DO
+ (-—1)' _ (.—1)‘
g1 P41 i+1

1 .
- _lz+l
i+l(§ )

and consequently,

(3) Py(x) =1+ Z

{I—I( +1—x);

k=0

+ 2)!

We will now prove that (3) is formally identical to the polynomials gener-
ated by (2) when

4) oy = 1/(N + 1).

Thus, the process (2) corresponding to (4) inverts 4 by interpolating the
operator function, f(4)=A"' between integral multiples of the identity
operator, I.

LEmMA 1.

x(l +N_1 {1_[ (k41— x)})

=+ 2)

{I_I(k+1—x)

k=0

(N + 1!

Proor. By induction on N. For N=1, we have x(1+(1/2){(1—x)})=
1—(1/2D){(1 —x)(2—x)}. If the lemma is true for N=M, we then have, for
N=M+1,

x(1+ M {H(k+1—x)})

iz (i +2)' k=0

(1 +VZ— {H(k+ 1 —x):)

o (i + 2!

='+((Miz)' (M+1)'){g( +'“")}

{I—[(k+ 1— *c)}

k=0

(M+2)‘

M+1

[T +1—-x)}

(M+2)'{
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Consequently, the lemma holds also for N=M+-1, and therefore for all
N. QE.D.

LEMMA 2.

LS {H k+1 =)

oo+ 2)!s
- 2 1=,

Proor. By induction on N. For N=1, we have 1+ (1/2){(1 —x)}=
(1/2)(14+{(2—x)/1}). If the lemma is true for N=M, we then have for
N=M+1,

___1__(1 +M“{”1'—I“(k +1- x)})

M+2 bl il k
© =l + G 2 =)
___M:_2(1+(M+2—x)[1 +1:21( +2)‘{g( +1-—x)}])

By applying Lemma 1 to the right side of (5) and simplifying, we obtain

=)

t=1 “k=1t

- {I_I( +1—x)}

i=0 ( + 2)‘ k=0
hence the lemma holds also for N=M+4-1, and therefore forall N. Q.E.D.

M+2

THEOREM 2. Let A:H#'—# be a linear operator and let @y, denote the
corresponding sequence of linear operators generated by the recursive
averaging process,

N 1

(0] = (0] I — AP 1], o =1
M= T N+N+1[( Py + 1] 1

Then for N=1, @y, ,=Py(A).

PrOOF. By induction on N, and Lemma 2. For N=1, we have

O, = (/DI + AU — DI + 11 =T + (1201 — A) = Py(A).
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If the theorem is true for N=M, we then have for N=M+1,

® s = ;4'—+5<[<M +2)I — AIPy(4) + D)
e B
- 2( I+ ug{m &‘i‘k"—]l) = Pyan(4)

by Lemma 2. Q.E.D.

3. Conclusions. In view of Theorems 1 and 2, we conclude that the
forward Newton interpolation polynomials Py(A4) converge uniformly to
A'if A is a bounded, normal, linear operator with spectrum in the open
right half-plane. An analogous conclusion holds if the spectrum of 4 falls
in the open left half-plane, viz., the operators, ¥y, generated by

N

1
Yy, = v I+ AY, —1I], Y, =1,
M= N+N+][(+)1\/ ] 1

converge uniformly to 471, and are formally identical to backward Newton
interpolation polynomials Qy(x) for f(x)=1/x (on negative integral
multiples of the identity). Furthermore, it follows from a second result of
[1] that for all y € range of 4, Py(A)y converges at least weakly to some
solution of Ax=y, provided 4 is a bounded normal linear operator with
spectrum in any member of the family of closed disks,

(6) D(w) = {{eF"|(Re() — 1/w)* + (Im()))* = (1/w)*}, @€(0,1].

Once again, an analogous result obtains if the spectrum of A falls in the
reflection of (6) in the imaginary axis.
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