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Abstract. A theorem on uniform asymptotic stability of the null

solution of a system of differential equations is proved while assum-

ing that the null solution of a limiting equation is uniformly

asymptotically stable. This generalizes some of the results of

L. Markus.

1. The concept of the set of limiting equations of a given differential

equation has been introduced by G. R. Sell [4]. The notion of asymptotically

autonomous differential equations introduced by L. Markus [2] can be

described as those differential equations for which the set of limiting

equations consists of a single point. In [4], G. R. Sell has proved a theorem

on asymptotic stability of the null solution of a given differential equation

while assuming that the null solution of the given differential equation is

uniformly stable and the null solution of every limiting equation is

asymptotically stable (in a uniform sense). However, as pointed out in a

remark ([4, p. 273] and [5, p. 536]), his theorem does not generalize a

result of L. Markus [2, Theorem 2]. The aim of this paper is to prove a

theorem on uniform asymptotic stability which generalizes the result of L.

Markus [2, Theorem 2].

2. Throughout this paper, we follow the same notation as in [3] and [4].

Let W be an open set in Rn, Euclidean «-space. The Euclidean norm on

Rn will be denoted by |x|. Let C=C(Wx R, Rn) denote the set of all con-

tinuous functions/defined on Wx R with values in R". We shall say that a

function/« admissible [3] if (i)/£ C, and (ii) the solutions of the differential

equation x'=f(x,t) are unique. By the second condition we mean that

given any point (x0, t0) in Wx R, there is precisely one solution <f> of

x'=f(x, t) that satisfies </>(70)=x0. It is evident that if/ is an admissible

function, then every translate/ off (where/.(x, t)=f(x, t+r)) is an ad-

missible function. Also, if/satisfies the global existence property, then so

does each/. Let F={f/.T e R} be the space of translates of/; then F is a
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subset of C. Now let/be an admissible function and consider the space of

translates £ in the compact open topology [1] on C. Let F*0=Cl £ (that is,

the closure in the compact open topology) be the hull off. We shall say that

/is regular [3] if every function/* in the hull £c* is admissible. It is shown

in [3] that the mapping n*:F*0xR^F*0, defined by tt*(/*, ?)=/*, is a

dynamical system on £*0, when £^ has the compact open topology. We

shall say that the motion / is positively compact [3] if the closure of

{7r*(/ r):r^0} lies in a compact subset of £^.

Definition of limiting equations [4]. Let/e C and let £c* be the hull

off (neither regularity nor admissibility off will be important here). Let

7T*(/» t)=ft be the flow on £*0 and let O* denote the co-limit set of/ in this

flow. If the co-limit set Í2* of/ in £*0 is nonempty, then we say that the

set of limiting equations for

(2.1) x'=f(x,t)

is the set of all differential equations of the form

(2.2) x'=f*(x,t),

where/* e£2*.

We need the following result in our subsequent discussion.

Lemma 2.1 (Kamke). Let {g„} be a sequence of continuous functions in

C, and let g=lim gn, where the convergence is in the compact open topology

on C. Let </>n be a solution ofx'=gn(x, t) with </>„(0)—>-x0 e W. Then there is

a subsequence of {<pn} that converges to a solution <f> of x'=g(x, t) that

satisfies </>(0)=.y0, and the convergence is uniform on compact sets in the

interval of definition of <f>. If, in addition, the solutions of x'=g(x,t) are

unique, then r/> = lim cp„, where the convergence is uniform on compact sets in

the interval of definition of <f>.

In Theorems 4 and 5 of [4], G. R. Sell has proved that if the equation

(2.1), with the assumption that/is a regular function and/(0, t)=0 for

all r^O, has a "stable" solution, then the limiting equations (2.2) have the

same property. The problem of reversing these roles is a bit delicate. That

is, if we assume some stability properties of the solutions of (2.2), then it is

generally harder to derive results about the given equation (2.1). However,

he proved the following result.

Theorem 2.1 [4, Theorem 6]. Let feC be a regular function with

f(0, t)=0 (t^O) and assume that the motion f is positively compact, in the

compact open topology. If (i) the null solution of (2.1) is uniformly stable,

and (ii) the null solution of every limiting 'equation (2.2) is asymptotically

stable (in a uniform sense), that is \<f>(x0,f*, f)|—>-0 as i—»-co whenever
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|x0|^a and f* eîï*, then the null solution of the given equation (2.1) is

asymptotically stable.

3. Now, we shall prove the following main result.

Theorem 3.1. Let f be a regular function withf(0, t)=0 (r=0). If there

exists a function f* in O* such that the null solution of (2.2) is uniformly

asymptotically stable, then the null solution of the given equation (2.1) is

uniformly asymptotically stable.

Proof. Let <f>(x0,f*, t) be any solution of (2.2) with <f>(x0,f*, 0)=x„.

Let e>0 be given. Since the null solution of (2.2) is uniformly asymptotically

stable, given e/2 there exists a ôx = ôx(e/2)>0 (without any loss of generality

we can suppose that ôx<e/2) such that the inequality |x0|<<5, implies

(3.1) \4>(xn,f*,t)\<e/2    for/^0,

and there exists a (50>0, such that for every r¡>0 there exists a F= F(>y)>0

such that the inequality |x0|<<50 implies that

(3.2) \4>(xo,f*, t)\ <V    for t ^ T.

Choose <5 = min(<5,, ôn). From (3.1) and (3.2), we have

(3.3) \<P(xo,f*, t)\ < e/2    for t = 0,

whenever |x0|<r5, and for (5/2 there exists a T=T(ô/2) such that the

inequality |.v0|<<5 implies

(3.4) |^(x0,/*,OI<<5/2   for t^T.

Now, by Lemma 2.1, given/* e O* and (5/2 there is a d=d((5/2)>0 such

that

\<f>(x0,f*, t) - <p(x0, g, 01 < à/2,        t e [0, F],

|x0|<<5, whenever p(f*,g)<d, where p is any metric which generates the

compact open topology on F*0. By the definition of Í2* we can find a

translate/., t^O, such that p(/*,/)<d. Therefore

(3.5) \</>(x0,f*, t) - </>(xn,fi, 01 < <5/2    for / e [0, F], |x0| < Ô.

Combining (3.3) and (3.5), we get

l<Mx0,/r, 01 = \<i>(xo,f*, 01 + \<f>(xo,f, 0 - Hx0,f*, 01
< e/2 + (5/2 < e/2 + e/2 = e.

That is, |<¿(x0,/,0l<£ for ' e [0, T], |x0|<(5. Now, let xx = <f>(x0,fi, T);

then from (3.4) and (3.5) we have \xx\^\(f>(x0,f*, T)\ + \xx-<f>(x0,f*, T)\<
ô/2 + à/2=ô. Therefore, from (3.6) it follows that |^,/„ 0l<e for
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re[0, £], which in turn implies that \<f>(x0,fi, t)\<e for t e [0,2£],

|x0|<<5. Similarly, if we suppose x2=(p(xx,f, £),then \x2\^\<p(xx,f*, T)\ +

\x2-<p(xx,f*,T)\<o¡2+e¡2=o, and again, from (3.6), it follows that

\(j>(x0,fT, t)\ <e for / e [0, 3£], |x0|<<5. Now, let m be a positive integer and

assume that \<f>(x0,fi, t)\<s for te[0,mT], \x0\<ô, and assume that

\<p(x0,f,mT)\<è. Let xm = <p(x0,fi,mT); then from (3.3) and (3.5), we

have

\4>(xm,fr, t)\ ^ \4>(xm,f*, t)\ + \<p(xm,f, t) - <Kxn,f*, t)\

< e/2 + (5/2 < e/2 + e/2 = e,

for t e [0, £]. Therefore, <p(x0,f, t) can be continued to the interval

[mT,(m + l)T] on which \<p(x0,fi,t)\<e. Let xm+x = <f>(x0,fT, (m+l)T);

then from (3.4) and (3.5) and the fact that \xm\<ô, we have |xm+1|^

\cp(xm,f*, T)\ + \xm+x-<p(xm,f*, T)\<ôl2 + d/2 = ô. Thus, by induction,

\<f>(x0,fT,t)\<e, whenever |x0|<<3, on every interval [mT, (m + l)T] and

hence on [0, oo). Since ô is independent of t, we have, for a given £>0

there exist a ô = ô(e)>0 and a t=t(s)~^.0 such that \<j>(x0,f, t)\<e, t^r,

provided |x0|<<5. Now from the continuity of solutions with respect to the

initial values and the uniqueness of solutions, it follows that the null

solution of (2.1) is uniformly stable. For the rest of the proof, choose

ô0 = ô„ and fix |-x0|<<V Let r¡>0 be given. Choose 5(r¡)=min(ox(r¡l2), <50),

0<<5<»7, and Tx(n)=T(èj2). Lety0=<p(x0,fr, Tx), r=r(ri)^0. Then

\)'o\ ̂  \<f>(xoJ*, T,)\ + \<p(x0,fi, Tx) - <p(x0,f*, Tx)\ < 5/2 + -5/2 = Ô.

Thus by the first part of the proof, \<p(yo,ft)\<r¡ for t^r, whenever

\yo\ <^(*?)- Now by the uniqueness of solutions, it follows that \<f>(x0,f, t)\ <

r¡ for f^£*, whenever |a-„|<c50, where T* = T*(rj) = r+Tx. This completes

the proof of the theorem.

Remark 3.1. Observe that in Theorem 2.1, G. R. Sell assumed that the

motion / is positively compact and the null solution of every limiting

equation (2.2) is asymptotically stable (in a uniform sense) to prove that

the null solution of (2.1) is asymptotically stable. Clearly, Theorem 2.1

does not generalize a result of L. Markus [2, Theorem 2] as remarked in

[4, p. 273] and [5, p. 536]. It is appropriate to remark here that, in

Theorem 3.1, we merely assume that the null solution of (2.2) for some/*

in Q* is uniformly asymptotically stable to prove that the null solution of

(2.1) is uniformly asymptotically stable. Obviously, this would generalize

the result of L. Markus [2, Theorem 2] for asymptotically autonomous

equations.

The authors wish to thank the referee for his valuable suggestions.
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