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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant

and polished character, for which there is no other outlet.

A  CHARACTERIZATION   OF  REALCOMPACT

EXTENSIONS

MARLON   RAYBURN

Let Af be a Tychonov space, R be the real numbers and R* = Ru{oo}

be its one point compactification. As in [1, 8B], for each g e C(X), let

g^-.ßX^-R*   be  its  Stone  extension   and  vgX={p e ßX:gJt(p)j^co}=

g7[Rl
Let F be any Tychonov space containing X densely and let/:/SA'—»-/?F

be the continuous map fixing X pointwise. Let CT^C(X) be that family

of functions which can be continuously extended to F. In [2, Theorem 2],

it was shown that g e CT if and only if for every sequence (Fn)™=x of

closed sets in R such that f] "=i Fn= 0, it follows that f\„=i clT gT[F„] =

0.

Lemma.    For any such T,f~[T]^f}geC vgX.

Proof. Choose any geCT, extend it to G e C(T) and let G* :ßT-+R*

be its Stone extension. Set h:ßX—>-R* by h = G °fi But h\X=g, so h and g+

agree on a dense subset of ßX, whence h=g*. Clearly/i|/*~[F] takes/*~[F]

into R, so g*[R] = vgX^r[T].

Theorem.    F is realcompact if and only iff~~[T]=f\„ec vgX-

Proof. (Only if) Let p e ßX-f~~[T]. Then f(p) e ßT-T. Now F is
realcompact, so there is a G e C(T) such that G*:ßT—>-R* and G*(/(/>))=

oo. Let G\X=geC(X) have Stone extension g^:ßX^-R*. Define h:

ßX^-R* by 6 = G* °fi Then h is continuous and h\X=g=g*\X, so

g* = C*°/.   Thus g*(p) = G*(f(p))=œ.   Since G e C(T), geCT and
P * vgX-

(If) Let p e ßX—/""[F]. Then there is a g e CT such that p $ vgX,

so £*(/>)= oo. Now let G e C(T) be such that G|A==g. Extend g to G*:

ßT^R* and compare g„:ßX->-R* with G* °f:ßX-*R*. These agree on
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X, so g* = G* of. Thus 0*(/(/?))= oo. So given any t e ßT—T, there is a

G e C(T) such that G*(r)= °°, whence T is realcompact.

Corollary.    For any extension T, Doec ^A^/^fuF].

Proof.   CT=C„r.
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