SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A CHARACTERIZATION OF REALCOMPACT EXTENSIONS

MARLON RAYBURN

Let X be a Tychonov space, R be the real numbers and $R^* = R \cup \{\infty\}$ be its one point compactification. As in [1, 8B], for each $g \in C(X)$, let $g_*: \beta X \to R^*$ be its Stone extension and $v_g X = \{p \in \beta X : g_*(p) \neq \infty\} = g_*^+[R]$.

Let T be any Tychonov space containing X densely and let $f: \beta X \to \beta T$ be the continuous map fixing X pointwise. Let $C_T \subseteq C(X)$ be that family of functions which can be continuously extended to T. In [2, Theorem 2], it was shown that $g \in C_T$ if and only if for every sequence $(F_n)_{n=1}^{\infty}$ of closed sets in R such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$, it follows that $\bigcap_{n=1}^{\infty} \operatorname{cl}_T g^{\leftarrow}[F_n] = \emptyset$.

LEMMA. For any such $T, f^{\leftarrow}[T] \subseteq \bigcap_{g \in C_m} v_g X$.

PROOF. Choose any $g \in C_T$, extend it to $G \in C(T)$ and let $G_*: \beta T \to R^*$ be its Stone extension. Set $h: \beta X \to R^*$ by $h = G \circ f$. But $h \mid X = g$, so h and g_* agree on a dense subset of βX , whence $h = g_*$. Clearly $h \mid f^+[T]$ takes $f^+[T]$ into R, so $g_*^+[R] = v_g X \supseteq f^+[T]$.

THEOREM. T is realcompact if and only if $f^{\leftarrow}[T] = \bigcap_{g \in C_{\pi}} v_g X$.

PROOF. (Only if) Let $p \in \beta X - f^+[T]$. Then $f(p) \in \beta T - T$. Now T is realcompact, so there is a $G \in C(T)$ such that $G_* : \beta T \to R^*$ and $G_*(f(p)) = \infty$. Let $G | X = g \in C(X)$ have Stone extension $g_* : \beta X \to R^*$. Define $h: \beta X \to R^*$ by $h = G_* \circ f$. Then h is continuous and $h | X = g = g_* | X$, so $g_* = G_* \circ f$. Thus $g_*(p) = G_*(f(p)) = \infty$. Since $G \in C(T)$, $g \in C_T$ and $p \notin v_g X$.

(If) Let $p \in \beta X - f^-[T]$. Then there is a $g \in C_T$ such that $p \notin v_g X$, so $g_*(p) = \infty$. Now let $G \in C(T)$ be such that G | X = g. Extend g to $G_* : \beta T \rightarrow R^*$ and compare $g_* : \beta X \rightarrow R^*$ with $G_* \circ f : \beta X \rightarrow R^*$. These agree on

Presented to the Society, February 2, 1972; received by the editors May 30, 1972. AMS (MOS) subject classifications (1970). Primary 54D60.

[©] American Mathematical Society 1973

X, so $g_*=G_*\circ f$. Thus $G_*(f(p))=\infty$. So given any $t\in\beta T-T$, there is a $G\in C(T)$ such that $G_*(t)=\infty$, whence T is realcompact.

COROLLARY. For any extension T, $\bigcap_{g \in C_T} v_g X = f^{\leftarrow}[vT]$.

PROOF. $C_T = C_{vT}$.

REFERENCES

- 1. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 2. R. Engelking, Remarks on real-compact spaces, Fund. Math. 55 (1964), 303-308. MR 31 #4000.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA