ON A PROBLEM OF F. RIESZ CONCERNING PROXIMITY STRUCTURES

W. J. THRON

ABSTRACT. It is shown that every separated Lodato proximity is induced by the elementary proximity on a T_1 bicompactification of the original space.

A basic proximity structure Π on a set X is a relation on $\mathfrak{P}(X)$ satisfying the following requirements

 $P_1:\Pi=\Pi^{-1}$,

 $P_2: A \cup B \in \Pi(C) \Leftrightarrow A \in \Pi(C) \text{ or } B \in \Pi(C),$

 $P_3: A \cap B \neq \emptyset \Rightarrow A \in \Pi(B),$

 $P_4: \varnothing \notin \Pi(A) \ \forall A \in \mathfrak{P}(X).$

Here $\Pi(A) = [B: \langle A, B \rangle \in \Pi]$. Each proximity structure induces a closure operator on X as follows: $c_{\pi}(A) = [x: [x] \in \Pi(A)]$. If for a proximity relation the additional condition

$$P_5: c_\pi(A) \in \Pi(B) \Rightarrow A \in \Pi(B)$$

also holds then Π is called a *LO-proximity*. A relation Π is said to be separated if in it

 $P_6: [x] \in \Pi([y]) \Leftrightarrow x = y,$ is valid.

A grill on X is a family $\mathfrak{G} \subset \mathfrak{P}(X)$ which satisfies:

 $G_1: A \supseteq B \in \mathfrak{G} \Rightarrow A \in \mathfrak{G},$

 $G_2: A \cup B \in \mathfrak{G} \Rightarrow A \in \mathfrak{G} \quad \text{or} \quad B \in \mathfrak{G},$

 $G_3: \emptyset \notin \mathfrak{G}.$

Grills were introduced by Choquet [1] in 1947. It is known (see for example [5, Lemma 5.7]) that every grill is the union of ultrafilters. It is easy to verify that the converse also holds. It is an immediate consequence of P_2 and P_4 that $\Pi(A)$ is a grill for all $A \in \mathfrak{P}(X)$.

Define $b(\Pi, \mathfrak{G}) = [B: c_{\pi}(B) \in \mathfrak{G}]$. One easily verifies that if \mathfrak{G} is a grill then $b(\Pi, \mathfrak{G})$ is a grill, $b(\Pi, \mathfrak{G}) \supset \mathfrak{G}$, and $\mathfrak{G}_1 \supset \mathfrak{G}_2$ implies $b(\Pi, \mathfrak{G}_1) \supset b(\Pi, \mathfrak{G}_2)$.

Received by the editors December 13, 1972.

AMS (MOS) subject classifications (1970). Primary 54E05; Secondary 54D35.

Key words and phrases. Proximity, LO-proximity, elementary proximity, bunch, Π-clan, grill.

A grill \mathfrak{G} for which it is true that $A, B \in \mathfrak{G} \Rightarrow A \in \Pi(B)$ will be called a Π -clan. A Π -clan \mathfrak{G} which satisfies the additional condition $b(\Pi, \mathfrak{G}) = \mathfrak{G}$ is called a *bunch*.

Let c be a Čech closure operator on X then the relation Π_0 on X defined by

$$A \in \Pi_0(B) \iff c(A) \cap c(B) \neq \emptyset$$

is a basic proximity. It is called the *elementary proximity* associated with c. It is not in general true that $c=c_{\pi_0}$. However, if Π is a separated LO-proximity then c_{π} is the closure operator for a T_1 -topology and if c is a Kuratowski closure operator which generates a T_1 -topology then $c=c_{\pi_0}$.

Let two proximity spaces (X, Π) and (Y, Π^*) and an injection $\varphi: X \to Y$ be given. Then Π is said to be induced by Π^* if

$$A \in \Pi(B) \Leftrightarrow \varphi(A) \in \Pi^*(\varphi(B)).$$

The problem of Riesz [6], referred to in the title, is the following: what types of proximity can be induced by elementary proximities on suitably constructed extension spaces of the original space? Riesz posed the problem in 1908, suggested a possible approach (using maximal Π -clans) but gave no answer. Clearly, the problem suggests that there may be a close relation between the proximities compatible with a given topological space and a certain class of topological extensions of the space. For EF-proximities Smirnov [7] in 1952 showed that they are induced by elementary proximities on T_2 -bicompactifications of the underlying space. Improving on earlier work of Leader [3] and Lodato [4] Gagrat and Naimpally [2] recently showed that every separated LO-proximity which satisfies the additional condition:

GN: Given $A \in \Pi(B)$ there exists a bunch \mathfrak{B} such that $A, B \in \mathfrak{B}$, is induced by the elementary proximity on a T_1 -bicompactification of the original space.

We shall show that every LO-proximity satisfies GN (Theorem 4) and hence every separated LO-proximity can be induced by an elementary proximity. Harris has coined the name WI-proximity for those proximities which can be induced by an elementary proximity. He has shown that every separated WI-proximity is a LO-proximity. It now follows that the separated WI-proximities are exactly the separated LO-proximities.

The result stated above is the final link in a chain whose other members are also of interest.

THEOREM 1. Let \mathfrak{F} be a filter and Π a basic proximity on X; then $\Pi(\mathfrak{F}) = \bigcap [\Pi(A): A \in \mathfrak{F}]$ is a grill.

PROOF. Clearly $\Pi(\mathfrak{F})$ satisfies conditions G_1 and G_3 . Now assume $A \cup B \in \Pi(\mathfrak{F})$ and $A \notin \Pi(\mathfrak{F})$, $B \notin \Pi(\mathfrak{F})$. Then there exist sets C and D in \mathfrak{F} such that $A \notin \Pi(C)$, $B \notin \Pi(D)$. From this $A \notin \Pi(C \cap D)$, $B \notin \Pi(C \cap D)$ follows. Since $C \cap D \in \mathfrak{F}$ we have $A \cup B \in \Pi(C \cap D)$ and thus a contradiction to the fact that $\Pi(C \cap D)$ is a grill.

THEOREM 2. Let Π be a basic proximity on X then $A \in \Pi(B)$ implies the existence of a Π -clan $\mathfrak G$ on X such that $A, B \in \mathfrak G$.

PROOF. Since $\Pi(B)$ is a grill it is a union of ultrafilters. Hence there exists an ultrafilter \mathfrak{U}_A such that $A \in \mathfrak{U}_A \subset \Pi(B)$. It follows from the symmetry of Π that $B \in \Pi(\mathfrak{U}_A)$. Since $\Pi(\mathfrak{U}_A)$ is a grill it follows that there exists an ultrafilter \mathfrak{U}_B such that $B \in \mathfrak{U}_B \subset \Pi(\mathfrak{U}_A)$. Since $\mathfrak{U}_B \subset \Pi(\mathfrak{U}_A)$ implies $\mathfrak{U}_A \subset \Pi(\mathfrak{U}_B)$ a desired Π -clan is $\mathfrak{G} = \mathfrak{U}_A \cup \mathfrak{U}_B$.

Theorem 3. Let Π be a LO-proximity on X then every maximal Π -clan is a bunch with respect to Π .

PROOF. If \mathfrak{G} is a Π -clan than $b(\Pi, \mathfrak{G})$ is a Π -clan. To see this note that since Π is a LO-proximity it satisfies P_5 and hence $b(\Pi, \Pi(A)) = \Pi(A)$. Since \mathfrak{G} is a Π -clan we have $\mathfrak{G} \subseteq \Pi(A)$ for all $A \in \mathfrak{G}$. Hence $b(\Pi, \mathfrak{G}) \subseteq b(\Pi, \Pi(A)) = \Pi(A)$. By symmetry of Π , $\mathfrak{G} \subseteq \Pi(B)$ for all $B \in b(\Pi, \mathfrak{G})$ and hence $b(\Pi, \mathfrak{G}) \subseteq \Pi(B)$ for all $B \in b(\Pi, \mathfrak{G})$. It follows that $b(\Pi, \mathfrak{G})$ is a Π -clan. For every maximal Π -clan \mathfrak{G}^* we then have $\mathfrak{G}^* = b(\Pi, \mathfrak{G}^*)$ (since $b(\Pi, \mathfrak{G}) \supseteq \mathfrak{G}$ for all grills \mathfrak{G}). That is \mathfrak{G}^* is a bunch.

THEOREM 4. Let Π be a LO-proximity on X and let $A \in \Pi(B)$. Then there exists a bunch \mathfrak{B} containing A and B.

PROOF. Let \mathfrak{G} be a Π -clan. There exists a maximal Π -clan \mathfrak{G}^* containing \mathfrak{G} . This is proved using Zorn's lemma. By Theorem 3 \mathfrak{G}^* is a bunch. By Theorem 2 a \mathfrak{G} can be found to contain A and B, hence \mathfrak{G}^* contains the two sets.

A more extensive discussion of the ideas employed here is given in a forthcoming article [8] by the author.

REFERENCES

- 1. G. Choquet, Sur les notions de filtre et de grille, C.R. Acad. Sci. Paris 224 (1947), 171-173. MR 8, 333.
- 2. M. S. Gagrat and S. A. Naimpally, Proximity approach to extension problems, Fund. Math. 71 (1971), 63-76.
- 3. S. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213. MR 22 #2978.
- 4. M. W. Lodato, On topologically induced general proximity relations, Proc. Amer. Math. Soc. 15 (1964), 417-422; II: Pacific J. Math. 17 (1966), 131-135. MR 28 #4513; 33 #695.

326 W. J. THRON

- 5. S. A. Naimpally and B. D. Warrack, *Proximity spaces*, Cambridge Tracts in Math. Phys., no. 59, Cambridge Univ. Press, New York, 1970. MR 43 #3992.
- 6. F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti IV Congr. Internat. Mat. (Roma 1908), vol. 2, pp. 18-24.
- 7. Ju. M. Smirnov, On proximity spaces, Mat. Sb. (N.S.) 31 (73) (1952), 543-574; English transl., Amer. Math. Soc. Transl. (2) 38 (1964), 5-35. MR 14, 1107.
 - 8. W. J. Thron, Proximity structures and grills, Math. Ann. (to appear).

Department of Mathematics, University of Colorado, Boulder, Colorado 80302