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NONLINEAR   OSCILLATION   OF  A  SUBLINEAR  DELAY
EQUATION OF ARBITRARY ORDER

TAKASI kusano and hiroshi onose

Abstract.   The equations considered generalize

x<">(r) + p(t)\x(g(t))\" sgn x(g(t)) = 0,       0 < a < 1.

A necessary and sufficient condition is established that all solutions

are oscillatory when n is even and are either oscillatory or strongly

monotone when n is odd. The result makes clear a difference in

oscillatory property between sublinear delay equations and the

corresponding ordinary differential equations.

We consider the nonlinear delay equation

(1) x^(t) + p(t)f(i,x(t),x(g(t))) = 0,

where the following conditions are always assumed to hold:

(a) p(t) is continuous and nonnegative on R+=[0, oo);

(b) g(t) is continuous on R+ and such that

g(t)^t,limt^ g(t)= co;

(c) f(t, x, y) is continuous on S=R+xRx R and such thatyf(t, x,y)>

0 for (t, x,y)e S with y^O.

We tacitly assume that under the initial condition

x(t) = 4>(t),   t ^ t0   and   x^(t0) = x°j,      j = 1 ,•••,«- 1,

equation (1) has a solution which can be continued to [r0, oo).

A nontrivial solution x(t) of (1) is called oscillatory if there exists a

sequence {fjJ^Li such that x(tk)=0 for all k and limfc_œ tk= oo. Otherwise,

a solution is called nonoscillatory. A nonoscillatory solution is said to be

strongly monotone if it tends monotonically to zero as r—>-oo together with

its first «—1 derivatives.

The object of this paper is to establish under appropriate restrictions on

/a necessary and sufficient condition that every solution of (1) be oscil-

latory in the case n is even and be either oscillatory or strongly monotone in

the case n is odd. Our theorem generalizes to arbitrary n^.2 those of

Gollwitzer [2] and Sevelo and Odaric [10] for the second order delay
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equation x"(t)+p(t)[x(g(t))Y=0, where a is the ratio of odd positive

numbers and <x< 1. (We note that Gollwitzer's theorem has been extended

to a class of second order functional differential equations by Burkowski

[1].) Our results show how the rate of growth for large / of the retarded

argument g(t) affects the oscillatory property of delay equations in

question.

Theorem 1.    Suppose there exist positive constants K and a< 1 such that

(2) \f(t, x, y)\ ^ K [y\?   for (t, x, y) E S.

Then a necessary condition that every solution of (I) be oscillatory ifn is even

and be either oscillatory or strongly monotone if n is odd is that

(3) [gOr'^XO dt = oo..
/»ao

J   [g(t)Y{n-1)p(t)dt =

Proof. The proof is based on the arguments developed by Waltman

[13], Hallam [3], Singh [12] and Ladas [7].

We assume that (3) does not hold and demonstrate that equation (1) has

a nonoscillatory solution x(t) such that lim,^ x(r)/rn-1=a#0.

Choose i0 so large thatg(?)>0 for t*^/0^ 1 and integrate (1) « times from

t0 to /. Then we have

x(t) = 2 ~* (* - tf - f-^TT, f O - s)*~Vs)/(s, x(s), x(g(s))) ds,
¿To    7¡ (n - 1)! J<o

which yields, in view of (2),

(A) \x(t)\ ^ Ct"-1 + Kt"-1    p(s) \x(g(s))\° ds,       t ^ t0,
Jlo

where C is a positive constant.

We define the function F(t) by

(5) F(t) = C + KÇP(s)\x(g(s)WdS.

Then

(6) \x(t)\   ̂    r-lF(t), t  ^  tn.

If we choose tx^.t0 so large that g(r) = 'o f°r ' = 'i> 'l follows from (6) and

the increasing character of F(t) that

(7) \x(g(t))\ ^ [g(t)r-1F(g(t)) ^ [g(t)]"-lF(t),        t ^ ty

From (5) and (7) we have

£'(0 = Kp(t) \x(g(tW ̂  KpiOlgOW-VFUT,        ' ^ tx,
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and consequently,

/ r-t U/ü-a)

Fit) ^ \F(txr-« + (1 - k)K^ ^(sW^'Ms) dsj

!i*ao U/(l—«)
F(hf-* + (1 - a)Kj(   [gis)Y(n~Vpis) ¿sj S C„

where Cx is a finite positive constant. The inequalities (6) and (7) then

become

(6') \x(t)\ ^ Cxr~\      t ^ tx,

(T) \x(g(t))\ ^ Cx[g(t)F-\       t ^ tx.

Now we integrate (1) from tx to t to obtain

t
p(s)f(s, x(s), x(g(s))) ds,x^-'Xt) = x1"-1'^) -

from which and in view of (2), (3), (7') we conclude that the finite limit

lim^^ x{n~1)(t) exists. If we require that

x(n~l)(tl) > CXK r[g(s)Y{^1)p(s) ds,
Jti

then this limit of x<n_1)(r) is not zero, and the solution x(t) has the desired

asymptotic property.

Theorem 2.    Suppose there exist positive constants k and /3< 1 swcA that

(8) \f(t, x, y)\ ^ k \y\»    for (t,x,y)eS.

If
/•CO

(9) J    [g(M'{n-"p{t) dt = »,

then every solution of (I) is oscillatory in the case n is even and is either

oscillatory or strongly monotone in the case n is odd.

The following lemma of Kiguradze [4] will be needed.

Lemma. If x(t), x'(t), ■ ■ ■ , x<n_1)(i) are absolutely continuous and of

constant sign on the interval [t0, oo), and xin)(t)x(t)^0, then there exists an

integer I, O^l^n— 1, which is even if n is odd and odd ifn is even, such that

MOI =:,    V0^1   „ l^"(2^)l     t ̂  t0.
(n - 1) ■ • ■ in - I)



222 TAKASI  KUSANO  AND  HIROSHI  UÑÓSE [September

Proof of Theorem 2. Our proof is an adaptation of the arguments

developed by Ryder and Wend [9] for the case g(t) = t and is similar to that

used by Sevelo and Vareh [11] for even order linear delay equations.

Let n be even and let x(t) be a nonoscillatory solution of (1). We may

assume that x(r)>0 for large /. From the fact that xM(t)<0 for large t, it

follows that x{n~L)(t) is decreasing and that the derivatives of x(t) of orders

up to n— 1 are eventually of constant sign, the odd order derivatives being

eventually positive. In particular, x'(r)>0, so that x(t) is increasing for

large t. According to Kiguradze's lemma we have

-)(l—n+l)(n—l)(f * \n—l

x(r) ^ x(2       i) ;>-— x       (i)
(n - 1) • • • (n - /)

for t^tn, provided /„ is sufficiently large. Therefore,

(10) x(t) ^ At^x^-^U),       t^tx = 2t0,

where A=2{l-n+1)in~L)/(n-l) ■ ■ ■ (n — l). Since lim,.,«, g(r)=oo, there is a

t2^.tx such that g(t)^.tx for t^.t2. From (10) and the decreasing character

of x(n_1)(r) we then have

(11) x(g(t)) ^ A I|;(/)](»-wx<«-1»(0,       t ^ t2.

Combining (1) with (8) and (11) gives

xM(t) + Aßp(t)[g(t)yi-n-V[x{-n-1)(t)]ß ^ 0.

Dividing by [x(n_1)(r)]p and integrating form t2 to / we obtain

1   ;   {)!       +A* flgWr-^WAáO,
1    —   P Í2 Jí2

which implies j^ [g(t)]ß{n-1)p(t) dt< oo, a contradiction.

The case where x(/)<0 for large t can be treated similarly.

Let n be odd and assume the existence of a nonoscillatory solution x(t).

If x(t) does not approach zero as t-*cc, then, writing

|x(r)| = |x(0/x(2'-"+1/)| • |x(2!-"+1f)|,

applying Kiguradze's formula to |x(2'^"+1r)| and using the decreasing

character of |x("_1)(r)|, we have

\x(t)\ "^ MAr-1 |jç<«-»(01,       t ^ tx,
and

\x(g(t))\ ^ MA fe(i)]"-1 |ac<-»(i)|,       t ^ t2

where M = inf¡a<o |x(r)/x(2'~n+1r)|- The proof now proceeds exactly as in

the case of even n. Thus it follows that a nonoscillatory solution of (1), if it
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exists, must approach zero as /—»-co. In this case, not only x(t) but also its

first «—I derivatives tend monotonically to zero ast—>-oo.

Remark. Under some additional smoothness assumptions on g(t), oscil-

lation criteria of the form (9) were obtained by Sevelo and Odaric [10] for

second order equations and by the present authors ([5], [6]) for higher

order equations.

Combining Theorems 1 and 2 we obtain the following

Theorem 3.    Suppose there exist positive constants k, K, <x< 1 such that

k \y\« ̂  \f(t, x, y)\ < K \y]*  for (t, x, y) e S.

Then a necessary and sufficient condition that every solution of (I) be

oscillatory when n is even and be either oscillatory or strongly monotone when

n is odd is that (3) be valid.

Remark. Ifg(i) is of the formg(/) = ? — t(/) with 0<t(j)<M, then (3)

is equivalent to
(•00

(12) fin-"p(t) dt = oo.

Thus Theorem 3 is an extension of a theorem of Gollwitzer [2, Theorem 2]

for the second order sublinear delay equation.

Remark. On the basis of Theorem 3 we can compare the oscillatory

property of sublinear delay equations with that of the corresponding

differential equations without delay. As an illustration we consider

(13) x<«)(0 + M0|A-(0|asgn,v(0 = 0

and

(14) *<«>(*) + p(t) \xigit)T sgn x(g(t)) = 0,

where« ¡seven andO<a< 1. It is well known ([4], [8]) that all solutions of

(13) are oscillatory if and only if (12) holds. Therefore, ifg(r) is such that

the integrals in (3) and (12) converge or diverge simultaneously, e.g., if

lim,.,^ g(t)/t=c>0, then equations (13) and (14) have the same oscillatory

property. It may happen that (12) holds but (3) does not. In this case, all

solutions of (13) are oscillatory, while among solutions of (14) there is a

nonoscillatory solution.

Acknowledgment. The authors wish to thank the referee for his
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