THE NUMBER OF CONTINUA

F. W. LOZIER AND R. H. MARTY

ABSTRACT. It is shown there are precisely 2^n topologically distinct continua of weight n and power m where $p \le n \le m$ and p is the smallest cardinal for which there is a continuum of power m and weight p. In particular, there are precisely 2^m topologically distinct continua of power m.

All spaces considered are assumed to be Hausdorff and all cardinals infinite. A continuum is a compact connected space. It follows from a classical result of P. Alexandroff and P. Urysohn ([1, p. 105]: The weight of a compact space never exceeds its power) that there are at most 2^m topologically distinct compact spaces of power m. (There are just 2^m collections, of cardinality at most m, of subsets of a set of cardinality m.) The following sharper result will be useful.

PROPOSITION 1. There are at most 2^n topologically distinct compact spaces of weight n.

PROOF. Suppose $\{X_{\xi} \colon \xi \in \Xi\}$ is a collection of topologically distinct compact spaces of weight n. For each $\xi \in \Xi$, let \mathscr{B}_{ξ} be a base of cardinality n for X_{ξ} . For each pair $U, V \in \mathscr{B}_{\xi}$ with $\bar{U} \cap \bar{V} = \varnothing$, let $f_{U,V}$ be an element of $C(X_{\xi})$ such that $f_{U,V}|U=1$ and $f_{U,V}|V=0$. Let \mathscr{F}_{ξ} denote the subset of $C(X_{\xi})$ consisting of all these $f_{U,V}$'s together with all constant functions f(x)=r with r rational. Then card $\mathscr{F}_{\xi} \leq n$ and, by the Stone-Weierstrass Theorem, the smallest closed subring of $C(X_{\xi})$ containing \mathscr{F}_{ξ} is $C(X_{\xi})$, where $C(X_{\xi})$ is given the usual metric.

Now let Z be a fixed discrete space of power n and let $C^*(Z)$ have the usual metric. For each $\xi \in \Xi$, choose $f_{\xi}: Z \to X_{\xi}$ such that $f_{\xi}[Z]$ is dense in X_{ξ} , and let $F_{\xi}: C(X_{\xi}) \to C^*(Z)$ be the induced map of f_{ξ} ; i.e., such that $F_{\xi}(f) = f \circ f_{\xi}$ for every $f \in C(X_{\xi})$. Then each F_{ξ} is a ring isomorphism so that, for $\xi \neq \xi'$, $F_{\xi}[C(X_{\xi})]$ and $F_{\xi'}[C(X_{\xi'})]$ are nonisomorphic, and hence distinct, subrings of $C^*(Z)$. Furthermore, each F_{ξ} is an isometry; in particular, since $C(X_{\xi})$ is complete, $F_{\xi}[C(X_{\xi})]$ is a closed subspace of

Received by the editors October 4, 1972.

AMS (MOS) subject classifications (1970). Primary 54A25, 54F15; Secondary 54A10, 54D05.

Key words and phrases. Continuum, weight, power, long line.

 $C^*(Z)$. Thus the smallest closed subring of $C^*(Z)$ containing $F_{\xi}[\mathscr{F}_{\xi}]$ is $F_{\xi}[C(X_{\xi})]$ for every $\xi \in \Xi$. Thus for $\xi \neq \xi'$, $F_{\xi}[\mathscr{F}_{\xi}] \neq F_{\xi'}[\mathscr{F}_{\xi'}]$. Consequently, $\{F_{\xi}[\mathscr{F}_{\xi}]: \xi \in \Xi\}$ is a collection of distinct subsets of $C^*(Z)$ of cardinality at most n. But $C^*(Z)$ has cardinality 2^n and hence at most 2^n subsets of cardinality at most n. Thus card $\Xi \leq 2^n$.

PROPOSITION 2. For every cardinal $m \ge 2^{\aleph_0}$, there are 2^m topologically distinct continua of power m and weight m.

PROOF. Let L denote the long line constructed on the set S of all ordinals $\beta \leq \omega(m)$, the initial ordinal of cardinality m. We regard S as a subset of L. For each $\beta \in S$, let $\langle X_{\beta}, x_{\beta} \rangle$ be either $\langle I^2, (0,0) \rangle$ or $\langle I^3, (0,0,0) \rangle$, where $I = [0,1] \subset R$. Let X be the space obtained by attaching each X_{β} to L by identifying $x_{\beta} \in X_{\beta}$ with $\beta \in S$, and weakening the usual quotient topology by requiring that any neighborhood of a limit ordinal $\gamma \in S$ contains $\bigcup \{X_{\beta}: \alpha < \beta < \gamma\}$ for some $\alpha < \gamma$. Then X is a continuum of power m and weight m.

Now suppose X' were another such space constructed in the same way but with a conceivably different choice of the $\langle X'_{\beta}, x'_{\beta} \rangle$'s, and suppose $f: X \rightarrow X'$ were an onto homeomorphism. Let Y denote he set of all points of X at which the dimension is 1; then $L = \overline{Y}$ and $S = \overline{Y} \cap (X - Y)$. Similarly, $L' = \overline{Y}'$ and $S' = \overline{Y}' \cap (X' - Y')$ in X'. It is immediate that f[Y] = Y', and hence f[L] = L' and f[S] = S'. But then f[L] is monotone, so that f[S] is order-preserving and hence the identity. Now consider the subspace $Z = \bigcup \{X_{\beta}: \beta \in S\}$ of X, which is the disjoint union of the connected subspaces X_{β} , and the analogous subspace Z' of X'. Because $Z = (X - L) \cup S$ and $Z' = (X' - L') \cup S'$, it follows that f[Z] = Z'; in particular, f maps each X_{β} onto some X'_{β} . Because f[S] is the identity, it follows that $f[X_{\beta}] = X'_{\beta}$ for every $\beta \in S$. Therefore, since I^2 and I^3 are not homeomorphic, it follows that $X'_{\beta} = X_{\beta}$ for every $\beta \in S$.

Finally, since there are 2^m different ways to choose the X_{β} 's there are 2^m topologically distinct continua of power m and weight m.

PROPOSITION 3. For every cardinal $m \ge 2^{\aleph_0}$, let p be the smallest cardinal for which there is a continuum of power m and weight p. Then for every cardinal n with $p \le n \le m$, there are 2^n topologically distinct continua of power m and weight n.

PROOF. Let K be a continuum of power m and weight p. For any cardinal n with $p \le n \le m$, let L be the long line constructed on the set of all ordinals $\beta \le \omega(n)$. Construct X as in Proposition 2; but take X_0 to be $K \times I^2$ and take X_β , for $\beta > 0$, to be either I^2 or I^3 . The argument is then similar to Proposition 2.

REMARKS. For the case $m=2^{\aleph_0}$, the requirement that $X_0=K\times I^2$ can be dispensed with. Furthermore, for the case $m=2^{\aleph_0}$, $n=\aleph_0$, all of the constructed continua can be embedded in the plane by choosing X_β to be either I^2 or an annulus. If $m=2^q$ for some q, then p is simply the smallest such q; for then I^p is a continuum of power m and weight p. In particular, if we assume the Generalized Continuum Hypothesis, then the only continua of power m other than those of weight m are (for nonlimit cardinals m) the 2^n topologically distinct continua of weight n where n

The authors wish to express their gratitude to S. Mrowka and the referee for their helpful suggestions.

REFERENCES

- 1. R. Engelking, Outline of general topology, North-Holland, Amsterdam; Interscience, New York, 1968. MR 37 #5836.
- 2. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.

DEPARTMENT OF MATHEMATICS, CLEVELAND STATE UNIVERSITY, CLEVELAND, OHIO 44115