AUTOMORPHISMS OF COMMUTATIVE BANACH ALGEBRAS

B. E. JOHNSON

ABSTRACT. This paper presents a new proof of the theorem of Kamowitz and Scheinberg which states that if α is an element of infinite order of the automorphism group of a commutative semi-simple Banach algebra then the spectrum of α contains all complex numbers of absolute value 1. The proof depends on the fact that the only closed translation invariant subalgebras of $l^{\infty}(-\infty, +\infty)$ (pointwise multiplication) for which the restriction of the shift has a complex number of absolute value 1 in its resolvent set are certain spaces of periodic sequences.

Let $\mathfrak A$ be a commutative Banach algebra and α an automorphism of $\mathfrak A$. In [1] Kamowitz and Scheinberg show that either $\alpha^n=\iota$, the identity map on $\mathfrak A$, for some positive integer n, in which case $\sigma(\alpha)$ is a finite union of subgroups of the circle group T, or $T\subseteq \sigma(\alpha)$. In this paper we give an entirely different proof of the same result by showing that if E is an open arc in T and $c\in l^\infty$ ($=l^\infty(Z)$) is such that every element of the translation invariant subalgebra of $l^\infty(Z)$ generated by c is in $(S-\lambda I)^3 l^\infty$ for all λ in E, where S is the translation operator, then c is a periodic sequence. This gives the required theorem by considering the sequences $c_n = \varphi(\alpha^n a)$, $a \in \mathfrak A$, φ an element of the spectrum $\Phi_{\mathfrak A}$ of $\mathfrak A$ and E a component of $T \setminus \sigma(\alpha)$.

If $c \in l^{\infty}$ then $\{(1+n^2)^{-1}c_n\} \in l^1$ so c is the series of Fourier coefficients of a distribution $\hat{c}=(1-D^2)\sum (1+n^2)^{-1}c_n\omega^n$ of order 2 on T. We refer the reader to [2], in particular pp. 80-83 for information on distributions. We denote the support of \hat{c} by $\tau(c)$. If $a \in \mathfrak{A}$, $\varphi \in \Phi_{\mathfrak{A}}$ then $\tilde{a} \in l^{\infty}$ is the sequence $\tilde{a}_n = \varphi(\alpha^n a)$.

LEMMA. If $\lambda_0 \in T \setminus \sigma(\alpha)$ then $\lambda_0 \in T \setminus \tau(\tilde{a})$ for all $a \in \mathfrak{A}$.

PROOF. Let $a \in \mathfrak{A}$. We have $\tilde{a} = (1 - D^2)f$ for some $f \in C(T)$. There is a proper open arc E in T containing λ_0 with $E \cap \sigma(\alpha) = \emptyset$. For each λ in E there is b_{λ} in \mathfrak{A} with $(\alpha - \lambda)^3 b_{\lambda} = a$ so putting $\tilde{b}_{\lambda} = (1 - D^2)g_{\lambda}$, $g_{\lambda} \in C(T)$

Received by the editors July 17, 1972.

AMS (MOS) subject classifications (1970). Primary 46H05; Secondary 46F10, 47C05.

we get $(1-D^2)f = p_{\lambda}^3(1-D^2)g_{\lambda}$ where $p_{\lambda}(\omega) = \omega - \lambda$ so that on E

$$\begin{split} D^2 f_0 &= (1 - D^2) f = p_{\lambda}^3 g_{\lambda} - (2D^2 p_{\lambda}^3) g_{\lambda} + 6D(g_{\lambda} p_{\lambda}' p_{\lambda}^2) - D^2(p_{\lambda}^3 g_{\lambda}) \\ &= D^2(p_{\lambda}^3 h_{\lambda}) \end{split}$$

for some $h_{\lambda} \in C(E)$, $f_0 \in C(E)$.

Let E' be an interval in R which is mapped one-to-one onto E by $x \mapsto e^{ix}$ and let F_0 , H_λ etc. be the functions on E' corresponding to f_0 , h_λ etc. Then $D^2F_0 = D^2P_\lambda^3H_\lambda$ in the sense of distributions so that there are complex numbers k_λ , l_λ with

$$F_0(y) = P_{\lambda}^3(y)H_{\lambda}(y) + k_{\lambda}y + l_{\lambda}$$

for all $y \in E'$. Thus if $e^{ix} = \lambda$ we have $F_0(x-h) - 2F_0(x) + F_0(x+h) = o(h^2)$ as $h \to 0$ and so the second symmetric derivative of F_0 is 0 at each point of E'. From this it follows [3, p. 23, Theorem 10.7] (I am indebted to Professor T. M. Flett for this reference) that F_0 and $-F_0$ are both convex so that F_0 is linear in E', $D^2f_0=0$ in E and so $\tau(\tilde{a}) \subseteq T \setminus E$.

THEOREM. If $T \setminus \sigma(\alpha) \neq \emptyset$ then $\sigma(\alpha)$ is a finite union of finite subgroups of T.

PROOF. If $\lambda_0 \in T \setminus \sigma(a)$ and E is an open arc in $T \setminus \sigma(a)$ containing λ_0 then, by the Lemma, $E \cap \tau(\tilde{a}) = \emptyset$ for all a in \mathfrak{A} . Let A be the sup norm closure of $\widetilde{\mathfrak{A}}$ in l^{∞} . By the semicontinuity of τ on l^{∞} , A is a closed translation invariant subalgebra of l^{∞} with $E \cap \tau(c) = \emptyset$ for each c in A. Put $T = (\bigcup \{\tau(c); c \in A\})^-$, then $E \cap T = \emptyset$. If $\lambda \in T$, $n \in \mathbb{Z}^+$ and J is an open interval in T containing λ^n then we can find an interval I containing λ with $I^n \subset J$, an element c of A with $\tau(c) \cap I \neq \emptyset$ and an element d of l^1 with $d \in \mathscr{D}(T)$, support $d \subset I$ and such that $d\hat{c} = (d * c)^{\hat{n}} \neq 0$. As A is a closed translation invariant subalgebra, $d * c \in A$, $d * c \neq 0$ so $(d * c)^n \in A$, $\tau[(d * c)^n] \subset J$ and $(d * c)^n \neq 0$. Thus $\lambda^n \in T$.

Let p be an integer greater than 2π (length of E)⁻¹. As $T \cap E = \emptyset$ and λ in T implies λ^n is in T, $n=1,2,\cdots$, we see that every element of T is an nth root of unity for some $n \leq p$. Thus T is a subset of the set of p! roots of unity. Let $c \in A$. As in the Lemma, $\hat{c} = (1-D^2)f$ with $f \in C(T)$. Because $\tau(c)$ is finite f is of the form $f(\omega) = r\omega + s\bar{\omega}$ on each interval of $T \setminus \tau(c)$, \hat{c} is a combination of δ functions at the points of $\tau(c)$ and so c is a periodic sequence with period dividing p!. Thus for all φ in $\Phi_{\mathfrak{A}}$, a in \mathfrak{U} we have $\varphi(\alpha^{p} = \varphi(a))$ which shows $\alpha^{p} = \iota$ and $\sigma(\alpha)$ consists only of p! roots of unity.

As $\sigma(\alpha)$ is finite each point is an eigenvalue. If $\alpha(a) = \lambda a$, $a \neq 0$ then $\alpha(a^n) = \lambda^n a^n$ where, as $\mathfrak A$ is semisimple, $a^n \neq 0$ so that if $\lambda \in \sigma(\alpha)$, $n \in \mathbb Z^+$ then $\lambda^n \in \sigma(\alpha)$. It follows from this that if $\sigma(\alpha)$ contains one primitive

mth root of unity it contains all mth roots of unity and so is a finite union of finite subgroups of T.

The following result, due to Singer and Wermer, is a corollary of the theorem of Kamowitz and Scheinberg.

COROLLARY. Let D be a continuous derivation on the commutative Banach algebra \mathfrak{B} . Then $D\mathfrak{B}\subseteq radical$ of \mathfrak{B} .

PROOF. Replacing D by tD if necessary (0 < t < 1), we can assume $\|D\| < \frac{1}{2}$. Then $\beta = e^D$ is an automorphism of $\mathfrak B$ with $\|\iota - \beta\| < e^{1/2} - 1 < 1$. Put $\mathfrak A = \mathfrak B/\mathrm{rad} \, \mathfrak B$. Because rad $\mathfrak B$ is invariant under β , β induces an automorphism α of $\mathfrak A$ with $\|\iota - \alpha\| < 1$ and hence $\sigma(\alpha) \subseteq \{z : z \in C, |z - 1| < 1\}$. Thus in the second last paragraph of the proof of the theorem we have length of $E > \pi$ and can take p = 1, giving $\alpha = \iota$. Thus $\iota - \beta$ maps $\mathfrak B$ into rad $\mathfrak B$ and hence so does $D = \log \beta = -\sum n^{-1} (\iota - \beta)^n$.

REFERENCES

- 1. H. Kamowitz and S. Scheinberg, *The spectrum of automorphisms of Banach algebras*, J. Functional Analysis 4 (1969), 268-276. MR 40 #3316.
- 2. L. Schwartz, *Théorie des distributions*, Tome II, Actualités Sci. Indust., 1122, Hermann, Paris, 1951. MR 12, 833.
- 3. A. Zygmund, Trigonometrical series. Vol. I, 2nd ed. reprinted with corrections and some additions, Cambridge Univ. Press, New York, 1968. MR 38 #4882.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEWCASTLE UPON TYNE, NEWCASTLE UPON TYNE, ENGLAND