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AUTOMORPHISMS  OF  COMMUTATIVE

BANACH  ALGEBRAS

B.   E.  JOHNSON

Abstract. This paper presents a new proof of the theorem of

Kamowitz and Scheinberg which states that if a is an element of

infinite order of the automorphism group of a commutative semi-

simple Banach algebra then the spectrum of œ contains all complex

numbers of absolute value 1. The proof depends on the fact that the

only closed translation invariant subalgebras of /œ(—oo,+00)

(pointwise multiplication) for which the restriction of the shift has

a complex number of absolute value 1 in its resolvent set are certain

spaces of periodic sequences.

Let 91 be a commutative Banach algebra and a an automorphism of 81.

In [1] Kamowitz and Scheinberg show that either a" = t, the identity map

on 9Í, for some positive integer n, in which case a(x) is a finite union of

subgroups of the circle group T, or Js o-(oc). In this paper we give an

entirely different proof of the same result by showing that if E is an open

arc in T and ce/" ( = /x(Z)) is such that every element of the translation

invariant subalgebra of /°°(Z) generated by c is in (S—Xiyiœ for all X

in E, where S is the translation operator, then c is a periodic sequence.

This gives the required theorem by considering the sequences cn = q>(ct"a),

ae%, 99 an element of the spectrum 0,n of 91 and E a component of

!>(*)•

If c e laj then {(1 +n2)~lcn} e I1 so c is the series of Fourier coefficients

of a distribution c=(l— D2) T (H-«2)-1^«" of order 2 on T. We refer

the reader to [2], in particular pp. 80-83 for information on distributions.

We denote the support of c by t(c). If a e 91, cp e <t>,!{ then à e Ira is the

sequence ä„ = (p(u.na).

Lemma.    IfX0 e T\o(a.) then X0 e T\r(ä)for all a e %

Proof. Let aeK. We have a~ = ( 1 - D2)f for some/eC(r). There

is a proper open arc E in T containing Xa with En¡a(x)= 0. For each X

in £ there is bx in 91 with (a—Xi)3bx=a so putting bx ~(l—D2)gx^gke C(T)
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we get (1 — D2)f=p\(\ —D2)gx where px(«>) = o) — X so that on E

D% = (1 - D2)f = p\gx - (2D2p\)gx + ôDigrftâ) - D2(p\gx)

= D2(p\hx)

for some hx e C(E),f0 e C(E).

Let £' be an interval in R which is mapped one-to-one onto E by

xi—*eix and let F0, Hx etc. be the functions on £" corresponding to/0, hx etc.

Then D2F0=D2P\HX in the sense of distributions so that there are complex

numbers kx, lx with

F¿y) = P\(y)Hx(y) + kxy + lx

for all y e £". Thus if eix = X we have FQ(x-h)-2F0(x)+F0(x+h)=o(h2)

as A—>-0 and so the second symmetric derivative of F0 is 0 at each point of

£". From this it follows [3, p. 23, Theorem 10.7] (I am indebted to Profes-

sor T. M. Flett for this reference) that F0 and —F0 are both convex so

that F0 is linear in £", D2f0=0 in E and so t(5)£ T\E.

Theorem. If T\o(a.)^ 0 then o(a.) is a finite union of finite subgroups

ofT.

Proof. If A0 6 T\a(a) and E is an open arc in T\a(a) containing X0

then, by the Lemma, Enr(ä)= 0 for all a in %. Let A be the sup norm

closure of "Ñ, in /°°. By the semicontinuity of ron /œ ,A is a closed translation

invariant subalgebra of /°° with Enr(c)=0 for each c in A. Put T=

(U M«?); c€A})~, then EnT=0. U XeT, n e Z+ and / is an open

interval in 7" containing Xn then we can find an interval / containing X

with /"<=y, an element c of A with r(c)nl^0 and an element ¿/ of Z1

with de 3>(T), -support é?<=// and such that dc—(d*c) #0. As A is a

closed translation invariant subalgebra, d *c e A, d *c#0 so (d*c)n e A,

r[(d * c)"]<=y and (d * c)'V0. Thus X" e T.

Let p be an integer greater than 277 (length of E)~l. As TnE= 0 and

A in T implies X" is in T, n=\, 2, • • • , we see that every element of T

is an «th root of unity for some n^p. Thus T is a subset of the set of pi

roots of unity. Let ce A. As in the Lemma, c=(l — D2)f with fe C(T).

Because t(c) is finite/is of the form f(w)=rú)+sà~> on each interval of

T\t(c), c is a combination of (5 functions at the points of t(c) and so c

is a periodic sequence with period dividing p\. Thus for all cp in Oa,

a in U we have q>(<x.v'a) = (p(a) which shows a"! = t and rr(oc) consists only

of/)! roots of unity.

As ff(a) is finite each point is an eigenvalue. If x(a) = Xa, a#0 then

<x.(an)=Xnan where, as ?t is semisimple, an?£0 so that if A £ o-(a), n e Z+

then X" e cr(a). It follows from this that if cr(a) contains one primitive
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wth root of unity it contains all wth roots of unity and so is a finite union

of finite subgroups of T.

The following result, due to Singer and Wermer, is a corollary of the

theorem of Kamowitz and Scheinberg.

Corollary. Let D be a continuous derivation on the commutative

Banach algebra 93. Then D'&ç radical of'93.

Proof. Replacing D by tD if necessary (0<?<1), we can assume

||Z)||<i Then ß = eD is an automorphism of 93 with ||(-/3||<e1/2-l<l-

Put 9I = 93/rad 93. Because rad 93 is invariant under ß, ß induces an auto-

morphism a of 91 with ||( — a||<l and hence o(a)ç{z:z e C, \z—1|<1}.

Thus in the second last paragraph of the proof of the theorem we have

length of jfr>77 and can take p—\, giving <x = t. Thus i—ß maps 93 into

rad ^8 and hence so does Z) = log ß= — 2 n~l(i — ß)".
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