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LIE  AND  JORDAN  STRUCTURE IN   PRIME  RINGS

WITH  DERIVATIONS

RAM  AWTAR1

Abstract. In this paper Lie ideals and Jordan ideals of a prime

ring R together with derivations on R are studied. The following

results are proved: Let J? be a prime ring, U be a Lie ideal or a

Jordan ideal of R and d be a nonzero derivation of R such that

ud(u)—d(u)u is central in R for all u in U. (i) If the characteristic of

R is different from 2 and 3, then U is central in R. (ii) If R has charac-

teristic 3 and (/is a Jordan ideal then Cis central in R; further, if U

is a Lie ideal with u2 e U for all u in U, then U is central in R. The

case when R has characteristic 2 is also studied. These results extend

some due to Posner [2].

1. Introduction. A theorem of Posner [2] states that if R is a prime

ring, and tí" is a nonzero derivation of R such that, for all r e R, rd(r) —

d(r)r is in the centre of R, then R is commutative. Our object is to general-

ize this theorem to Lie and Jordan ideals of R.

All rings considered here are associative. Let R be a ring and Z be its

centre. For x, y e R, [x,y]=xy— yx. For a e R, let Ia denote the inner

derivation of R by a; i.e., Ia(x) = ax—xa for all x e R. Throughout the

paper d denotes a nonzero derivation of R. For definitions see [1].

2. Basic lemmas.    We begin with some preliminary lemmas.

Lemma 1. If R is a prime ring of characteristic different from 2 and U

is a Lie ideal of R such that for all u e U, [u, diu)] e Z, and u2 e U, then

[u, diu)]=0 for all u e U.

Proof. First observe that linearizing the relation [u,diu)]eZ on

u=u+u2, we obtain [u2, flY«)]+ [u, udiu)+diu)u] e Z. That is, 4[w, diu)]u e

Z for all u 6 U. Hence, [«, i/(w)][w, r] = 0 for all u e U, r e R. If for some

m in U, [diu), u]^0, then, as it is in the centre Z, we get [u, r]=0 for all

r e R, in particular [u, diu)]=0. Hence [u, diu)] = 0 for all u e U.    D
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Lemma 2. Let R be a prime ring and U a Lie ideal of R. Suppose that

[u, d(u)] e Z for all ueU. Then [\d(r), u], u] e Z for all ueU, re R.

Further, if for all ueU, [u, d(u)]=0 then [[d(r), u], u]=0 for all r e R,
ueU.

Proof. Let ueU and r e R, then [u, r] e U, so that [u+[u, r],

d(u+[u,r])]eZ. That is, [[u, r], d(u)]+ [u, [d(u), r]]+ [u, [u, d(r)]] eZ.

Now, [[u,r],d(u)]+[u,[d(u),r]]=[r,[d(u),u]] for any r e R, ueU.

Since [d(u), u] eZ, we get [[u, r], d(u)] + [u, [d(u), r]] = 0. Hence

[[d(r), u], u] e Z    for all r e R, u e U.

The last part can be obtained similarly.    D

The following lemma may have some independent interest.

Lemma 3. Let R be a prime of characteristic not 2 and let U be a Jordan

ideal ofR with ud(u)=d(u)u = Ofor all ueU. Then U=0.

Proof.    Linearize the relation ud(u)=0 on u to get

(1) ud(v) + vd(u) = 0   for all u,veU.

For ueU and any r e R, u(ur—ru)-\-(ur — ru)ueU. But 2(ru2 — u2r)—

{u(ru — ur) + (ru — ur)u} — {(ur—ru)u + u(ur—ru)}. As the first and second

term on the right hand side are in U, 2(ru2 — u2r) e U. As 2u2 e U,

2(u2r + ru2)e U. It follows that 4u2r and 4ru2 are in U. Replacing v by

4ru2 where r e R in (1) and using the hypothesis, we get ud(r)u2 = 0 for all

u e U, r e R. If in (1) we replace v by ur+ru where r e R, then u2d(r) +

ud(r)u+2urd(u) = 0; and hence u2d(r)u + ud(r)u2=0. Therefore, u2d(r)u=

0 for all u £ U and r e R. Again, put v=4uru=2{u(ur+ru) + (ur+ru)u} —

{2m2 • r+r ■ 2u2} in (1) where r e R; then 0=ud(u)ru + u2d(r)u + u2rd(u) =

u2d(r)u + u2rd(u). Hence, u2rd(u)=0 for all r e R, u e U. Lastly, replace v

by 4wV in (1), for r e R; then 0=ud(4u2r)+4u2rd(u)=4u3d(r). Hence,

u3d(r)=0 for all u e U and r e R. Then by Lemma 1 of [2], «3=0 for all

ueU. For ueU and r e R, 2(u2r+ru2) e U, so that 0=23(u2r+ru2)3.

Multiply on the right by u2r, to obtain 23(w2r)4=0. Hence, («V)4=0. If

for some u in U, u2?±0, then u2R is a nonzero right ideal of R in which the

quartic of every element is zero. By Levitzki's theorem [1, Lemma 1.1] R

would have a nilpotent ideal; which is impossible for a prime ring. Hence

u2=0 for all u e U. By repeating the above argument we can show that

w=0 for all ue U.    D

3. The main theorems.

Theorem 1. Let R be a prime ring of characteristic different from 2 and

3. Let dbe a nonzero derivation of R, and LI a Lie ideal of R with [u, d(u)\ e Z

for all u in U. Then U<^Z.
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Proof. By Lemma 2, [[dir), u], u] eZ for all ueU, r e R. Now,

proceeding on the same lines as in Posner [2] (cf. equations (16) to (27)),

we have [diu), u]=0 for all u e U. Again by Lemma 2,

(2) [[dir), u], u] = 0   for all u e U, r é R.

Replace u by u + w with w e U in (2).

(3) [[dir), «J, w] + [[</(/■), w], w] = 0    for all reR,u, w e U.

Suppose now that vr, v e U are such that wv is also in U. By replacing w

by wv in (3), where v e U, and expanding we get

w[[d{r), u], v] + [[dir), u], w]v + [dir), w][v, u]

+ [[dir), w], u]v + w[[d(r), v], u] + [w, u][dir), v] = 0.

In view of (3) the last equation reduces to [dir), w][v, u]+ [w, u][dir), v] =

0. For any t e R, well, the element v=tw—wt satisfies the criterion

wv £ U, hence by above

(4) [dir), w][[t, w], u] + [w, u][dir), [t, w]] = 0   for t, r e R;u,w e U.

Putting u=w in (4), we have

(5) [dir),w][[t,w],w] = 0    for r, te Rand we W.

Substitution of tdia) for r in (5) with a e R yields on expansion

[dir), w]{2[t, w][dia), w] + [[t, w), w]dia) + t[[dia), w], w)) = 0.

By (5) the second term is zero and by (2) the third term is zero, so that

(6) [dir), w][t, w][dia),w] = 0   for all r, t, a e R, w e U.

Put u=[t, w] in (4). Then [[/, w], w][[t, w], i/(r)]=0. Its linearization on

t = t+dia) where a e R together with (2) yields

(7) [[t, w], w][[dia), w],dir)] = 0   for all a, t, r e R and w e U.

Replace t by dit)p with p e R in (7) and expand; then

{2[dit), w][p, w] + d{t)[[p, w], w] + [[dit), w], w]p}[[dia), w], dir)] = 0.

By (7) the second term is zero, while by (2) the third term is zero. Hence

[dit), w][p, w][[dia), w], dir)] = 0.

In view of (6), the last equation reduces to

[dit), w][p, w]dir)[dia), w] = 0    for all a, r, p, t e R and w e U.

In (6) replace t by tdip), where p e R and using the last equation to get

[dir), w]R[dip), w][dia), w] = 0   for all r, p, a e R and w e U.
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Now, if [dir), w] = 0 for all r e R, w e U, that is for all reR, weU,

ilwd)r=0, then by [2, Theorem 1] w eZ for all w e U. Thus assume that

there exists aw e U such that for some reR, [dir), w]^0. That is w £Z .

Then for all a, p e R

(8) [d(p),w][d(a),w] = 02

Replace a by be where c, b e R and expand to get

[dip), w][dib), w]c + [dip), w]dib)[c, w]

+ [dip), w]b[dic), w] + [dip), w][b, w]dic) = 0.

Replace b by [t, w] where t e R. By (8) the first term is zero, while by (6)

the third term is zero, and by (5) the fourth term is zero. Therefore,

[dip), w]di[t, w])[w, c] = 0.

Since, a\[t, w])= [dit), w] + [t, diw)] and using (8) we get

[dip), w][t, diw)][w, c] = 0   for all p, c, t e R and w e U.

Replace c by crx where rx e R, then [dip), w][t, d(w)]R[w, c]=0. Since R

is prime and w^Z, we get [dip), w][t, diw)]=0 for p, t e R, weU.

Therefore, [dip), w]R[t, diw)]=0 for p, t e R and w £ U; which together

with [dir), w]5¿0 implies that diw) e Z.

Now suppose that ueU and ueZ. Then 0=d[u, a]=[diu), a] +

[u, dia)] and hence diu) eZ. Therefore, diu) eZ for all u e U, so that

di[w, a]) eZ for all a e R. That is, [diw), a]+[w, dia)] eZ for all a e R.

Thus [w, dia)] e Z for all a e R. In particular,

(9) [w, d(dw)\ = [w, dia)]w + [w,a]diw)eZ.

Commute (9) with w to get [w, [w, a]]diw)=0 for a e R. If í/(m)^0, and

as it is in the centre Z, [w, [w, a]]=0 for all a e R. By [1, Sublemma, p. 5]

w eZ, a contradiction. Hence, i/(w)=0. Thus, by (9), [w, dia)]w eZ for

all a e R; that is [dia), w][w, b]=0 for a, b e R. Replace b by be, where

c e R, then [dia),w]R[w,b]=0. Since R is prime, either weZ or

[dia), m']=0 for all a e R. So, in both cases w e Z, a contradiction. Hence

the conclusion is that w eZ for all h- £ U. This proves the theorem.    D

Now we should like to settle the problem when R has characteristic 3.

Note that the assumption that the characteristic is different from 3 does

not enter the proof of Theorem 1 onwards of equation [u, i/(w)] = 0 for all

u £ U. Therefore, if [u, diu)] = 0 holds for all ueU, we can show that

U<= Z even if R has characteristic 3. In view of Lemma 1, if R has charac-

teristic different from 2 and U is a Lie ideal of R such that for all ueU,

- Onward proof of this theorem is given by the referee.
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u2 e U and [u, d(u)] e Z, then [u, d(u)]=0 for all u e U. Hence, we get the

following weaker result.

Theorem 2. Let R be a prime ring of characteristic 3 and d a nonzero

derivation of R. If U is a Lie ideal of R with [u, d(u)] e Z and u2 e V for all

ue U, then U^Z.

Now we will show that the conclusion of Theorems 1 and 2 holds even

if U is a Jordan ideal of R. In this regard, we prove the following.

Theorem 3. Let R be a prime ring of characteristic not equal to 2. Let

d be a nonzero derivation of R and U be a Jordan ideal of R, such that

[u, d(uy] e Z for all ueU. Then ¡JaZ.

Proof. For ue U, 2u2 e U. Therefore by Lemma 1, [u, d(u)]=0 for all

ue U. Replace u by u + v, where v e U, then

(10) [u, div)] + [v, d(u)] = 0   for all u, veil.

In (10), replace v by ur+ru, r e R, and expand to get

u[u, d(r)x + [u, d(r)]u + d(u)[u, r]

+ [«, r]d(u) + u[r, d(u)] + [r, d(u)]u = 0,

i.e.,

(11) 2urd(u) - 2d(u)ru + u2d(r) - d(r)u2 = 0    for re R,ueU.

Replace r by ur in (11), then

(12) d(u)(u2r - ru2) = 0    for all r e R, u e U

that is, d(u)Iui(r)—0 for all r e R, u e U; hence by [2, Lemma 1], either

(13) u2 e Z   or   d(u) = 0   for all u e U.

For ue Uand any r e R, ur+ru e U. But

4uru = 2{u(ur + ru) + (ur + ru)u) — {2u2 • r + r • 2u2}.

The first and the second term on the right are in U. Hence 4uru e U.

Therefore, if we replace v by 4uru in (10), where r e R, then

d(u)[u, r]u + u[u, d(r)]u + u[u, r]d(u) + u[r, d(u)]u = 0,

i.e.,

(14) u2rd(u) - d(u)ru2 + u2d(r)u - ud(r)u2 = 0    for r e R, u e U.

Replace r by ur in (14) and use (14) to get ud(u)(uru—ru2)=0. However

in view of (12), this equation reduces to ud(u)u(ur—ru)=0. That is,

ud(u)u • lu(r)=0. By [2, Lemma 1], either

(15) ud(u)u = 0   or   ueZ   for all « 6 U.
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In (12), replace u by u+v where v e U and use (12). Then

{d(u) + d(v))[uv + vu, r] + d(u)[v2, r] + div)[u2, r) = 0.

Replace u by —«, then

{-d(u) + d(v)}[-uv - vu, r] - d(u)[v2, r] + d(v)[u2, r] = 0.

Adding last two equations and dividing by 2, we have d(u)[uv+vu, r] +

d(v)[u2, r] = 0 for all r e R and u,veU. By Lemma 3, ud(u)=¿0, for some

u in U, d(u)i¿0, hence by (13) u2 eZ. The net result of this is

d(u)[uv + vu, r] — 0.

Thatis,¿(w)/ui;+t,„(»-)—Oforall r e Rand v e U. By [2, Lemma 1] uv+vu e

Z for all veU.lf u2 = 0, then 0=d(u2) = ud(u)+d(u)u=2ud(u) so that

ud(u) = 0, a contradiction. Hence w2#0. Suppose that ud(u)u = 0 then

u2d(u) = 0 which implies that d(u)=0, a contradiction. Hence ud(u)u^

0, so (15) gives ueZ. Hence 2uv eZ; so that uv eZ for all v e U. As

u (¿¿0) g Z, we have v e Z for all v e U. Hence i/<=z. This completes the

proof of Theorem 3.    D

We should like to settle the problem even when R has characteristic 2.

In this case Lie ideals and Jordan ideals will coincide. We are proving now

the following weaker result.

Theorem 4. Let R be a prime ring of characteristic 2, and let d be a

nonzero derivation of R. Let U be a Lie (Jordan) ideal and a subring of R.

Suppose that [u, d(u)] e Z for all u e U. Then U is commutative.

Proof.    By Lemma 2, [[d(r), u], u]eZ i.e.,

(16) d(r)u2 + u2d(r) e Z   for a\\ r e R,u eU.

Commuting (16) with d(r) and u2 respectively, we get

(17a) u2d(r)2 = d(r)2u2   for all re R,ueU

and

(17b) u*d(r) = d(r)u4     for all r-e R, u e U

where d(r)2 stands for (d(r))2.

In (17a) replace r by v+u2v where v e U and use (17a). Then

(u2d(v))2 + u2d(v)d(u2)v + u2d(u2)vd(v) + u*d(v)2

= (d(v)u2)2 + d(v)d(u2)vu2 + d(u2)vd(v)u2 + u2d(v)2u2.

For u e U, d(u2)=ud(u)+d(u)u e Z, so that in view of (17b) the last

equation reduces to (u2d(v)+d(v)u2)2 = 0 for u, v e U. Since R is prime,
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by using (16) we get

(18) u2d{v) = div)u2   for all u, v e U.

Replace u by u+w where w e U in (18). Then

{uw + wu)div) = div)iuw + wu).

Replace w by wu, then iuw+wu)udiv)=div)iuw + wu)u = iuw+wu)div)u.

Therefore, iuw+wu)iudiv)+div)u)=0 for all u, v, w e U. Linearize the

last equation on u = u + ul, where uxe U and put v=u. Then using (18)

we get

iu\w + wu\)iud(u) + diu)u) = 0   for all u, v, w e U.

If [diu), u]t¿0 for some u in U, then u\w=wul for all ux, w e U; so that,

u2iwr+rw)=iwr+rw)u2 for all reR, u, weU. That is, wiu2r+ru2) =

iu2r+ru2)w for all reR, u, we U. Replace r by ru, then iu2r+ru2)x

iwu+uw) = 0 for all r e R, u, w e U. Replacing w by [u, t] we get

iu2r + ru2)iu2t + tu2) = 0   for all r, t e R, u e U.

Replace t by tp where p e R; then iu2r+ru2)Riu2t + tu2) = 0. Since R is

prime, we get u2 eZ for all u e U. Thus assume that [diu), u]=0 for all

ueU. By Lemma 2, [[dir),u],u]=0 i.e., u2 dir)=dir)u2 for all reR,

u e U. Replace r by ra where a e R, then

dir)iu2a + au2) + {u2r + ru2)dia) = 0.

For veU, d(v2) = vdiv)+div)v=0. Hence dir){u2v2+v2u2)=0 for all

reR, v e U. Thus by [2, Lemma 1] u2v2 = v2u2 for u, veU. Therefore

u2ivw+wv) = ivw+wv)u2 for u, v, w e U. Replace v by vw, then ivw+wv) x

iu2w+wu2)=0; so that iw2r+rw2)iu2w+wu2), i.e., Iw2Ír)iu2w+wu2)=0

for all r e R,u,w e U. The Lemma 1 of [2] forces that if w2 $ Z for some

w in U, then for that w, u2w=wu2 for all u e U. So that, [[«, u], w] = 0 for

all u, v e U. For w e U, then [[t>, w], t/]+[[w, u], v] = [[u, v], w] = 0 for

all u, v e U. Replace, in [[v, w], u]+[[w, u], v]=0, v by vw and expand

to obtain [[v, w],u]w+[v, w][w, u]+[[w, u],v]w=0. Hence, [v, w][w, u]=0

for all u, v e U. Replacing v by [w, r] and u by [w, t], we get

iw2r + rw2)iw2t + tw2) = 0    for all r,te R.

Replace r by tp where p e R, then (w2/--f i-w2)R(h'2/-|-?h'2)=0, which

implies that w2 eZ, a contradiction. Hence the conclusion is that u2 eZ

for all u e U.So in all possible cases w2 e Z for all « £ U so that iuv + vu) e

Z and iuv+vu)u e Z for all u, v e U. If u <£ ZiU), where Z(Í7) denotes the

centre of U, then uv+vu=0 for all v e U and u e ZiU). Hence U is com-

mutative.
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In Theorem 4, if we just assume that U is only a Lie (Jordan) ideal or

only a subring of R, then U may not be commutative. This is shown by

the following examples.

Example 1. Let R be a prime ring of all 2x2 matrices over a non-

commutative prime ring. Consider £/={(£ ¡5) e R}. It is clear that U is a

subring, but not a Lie ideal of R. Let us define d:R^-R such that

4' ß\=r ~\ rM»ai" v
\r   »I    \r    o I \r   »I

It is easy to verify that d is a nonzero derivation of R with [u, d(u)\ eZ

for all u e U. But U is not commutative.

Example 2. Consider the prime ring R of all 2x2 matrices over

GF'2). Let U={(ac ba), a, b, ce GF(2)}. It is clear that U is a Lie ideal

but not a subring of R. Let us define d:R~>-R such that

/a    ¿A        Id — c    a — d\ la    b\
d\ = for all g R.

\c   d]      \a- d   b- cj \c   dj

It can be seen that d is a nonzero derivation of R with [u, d(u)] e Z for

all u e U. However, U is not commutative.

Following example shows that a ring may satisfy all the assumptions

of Theorem 4, but U may not be in the centre, even though U is commuta-

tive.

Example 3. Let R be a ring of all 2x2 matrices with entries from

GF(2). Consider U={(ab ba), a, b e GF(2)}. Tt can easily be verified that

U is both a Lie (Jordan) ideal and a subring of R, but it is not an ideal of

R. Define d:R-+R as in Example 2. Then d satisfies [u, d(u)] e Z for all

ueU. Clearly U is commutative, but U is not in the centre of R.
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