COVERING DIMENSION IN FINITE-DIMENSIONAL METRIC SPACES

JAPHETH HALL, JR.

ABSTRACT. Let $P: 2^{\nu} \rightarrow 2^{\nu}$ be a structure in a topological space V such that $P(\varnothing) = \varnothing$, $P(\{x\}) = \{x\}$ if $x \in V$, and P(Z) is closed if $Z \subseteq V$. If G is a covering of V, let $G_x = \{X \in G: x \in X\}$. If X is a set and Y is a set, let |X| denote the cardinal number of X and $X - Y = \{x \in X: x \notin Y\}$. Let n be an integer such that $n \ge -1$. $\dim_P V$ is defined as follows: $\dim_P V = -1$ if $V = \varnothing$. If $V \ne \varnothing$, then $\dim_P V = n$ if (1) for each finite open covering G of V, there is an open refinement H of G such that $|H_x| \le n+1$ if $x \in V$; and (2) there is a finite open covering G of V such that if H is an open refinement of G, then $|H_x| \ge n+1$ for some $x \in V$. We say that P has property (*) if for each nonempty open $Y \subseteq V$ and each $X \subseteq V$ such that $P(X) \ne V$ and $x \notin P(X - \{x\})$ whenever $x \in X$ and each $x \in [V - P(X)]$, $[Y - P(X)] \cap P(X \cup \{x\}) \ne \varnothing$. Theorem. If V is a metric space, P has property (*), $B \subseteq V$, B is finite, P(B) = V and $x \notin P(B - \{x\})$ if $x \in B$, then $\dim_P V = |B| - 1$.

1. **Introduction.** It is known [5, pp. 9, 93-99] that the covering dimension of each finite-dimensional Euclidean space E^n is n, the usual dimension. The purpose of this paper is to present a short proof of this simply stated fact.

It is crucial that each finite-dimensional Euclidean space is a topological space V in which there is a structure $P: 2^V \rightarrow 2^V$ [4, p. 317] such that P is a closure structure having the exchange property ([2], [3], and [4]), $P(\emptyset) = \emptyset$, $P(\{x\}) = \{x\}$ for each $x \in V$, and P(Z) is closed for each $Z \subseteq V$. Indeed, if $V = E^n$, then the linear variety structure in V will suffice as P, that is, if $X \subseteq V$, then P(X) is the collection of all finite linear combinations of elements of X with coefficients summing to 1.

Consider a structure P in a set V and a subset X of V. By definition, X is P-independent ([2] and [3]) if $x \notin P(X-\{x\})$ for each $x \in X$; X is a P-basis of V if X is P-independent and P(X)=V. By definition, the P-dimension of V, P-dim V, exists if any two P-bases of V have the same cardinal number. If P-dim V exists, then P-dim V is the cardinal number

Received by the editors November 3, 1972.

AMS (MOS) subject classifications (1970). Primary 02K20, 06A10; Secondary 54C10.

Key words and phrases. Covering dimension, covering dimension relative to structures in topological spaces, finite-dimensional metric spaces.

of a P-basis of V. It is known ([2] and [3]) that if P is a closure structure having the exchange property and V has a finite P-basis, then P-dim V exists.

If G is a covering of a set V and $x \in V$, then the symbol G_x shall denote $\{X \in G : x \in X\}$. If X is a set and Y is a set, the symbol X - Y shall denote $\{x \in X : x \notin Y\}$, and the symbol |X| shall denote the cardinal number of X. Throughout the remainder of this paper it is assumed that V is a topological space and P is a structure in V such that $P(\emptyset) = \emptyset$, $P(\{x\}) = \{x\}$ for each $X \in V$ and P(Z) is closed for each $Z \subseteq V$.

The covering dimension of V relative to P, $\dim_P V$, is defined as follows: $\dim_P V = -1$ if $V = \emptyset$. If $V \neq \emptyset$ and n is a cardinal number, then $\dim_P V = n$ if (1) and (2) are true: (1) For each finite open covering G of V, there is an open refinement H of G [an open covering of V such that if $X \in H$, then $X \subseteq Y$ for some $Y \in G$] such that $|H_x| \leq n+1$ for each $x \in V$, and (2) There is a finite open covering G of V such that if H is an open refinement of G, then $|H_x| \geq n+1$ for some $x \in V$.

We say that P has property (*) if for each nonempty open subset Y of V and each P-independent subset X of V such that X is not a P-basis of V and each $X \in [V-P(X)], Y-P(X)$ contains an element of $P(X \cup \{x\})$.

It is shown (Theorem 1) that if G is a finite open covering of V and B is a P-basis of V, then there is an open refinement H_B of G such that $|(H_B)_x| \leq |B|$ for each $x \in V$; and (Theorem 2) that if V is a metric space and P has property (*) while B is a finite P-basis of V, then there is a finite open covering G_B of V such that if H is an open refinement of G_B , then $|H_x| \geq |B|$ for some $x \in V$. It follows (Theorem 3) that if V is a metric space and P has property (*) while B is a finite P-basis of V, then $\dim_P V = |B| - 1$.

2. Main results. If V is a metric space, then the following notation will be used: If r is a positive real number and X is a nonempty subset of V, then the symbol X_r shall denote $\{x \in V: d(x, X) < r\}$, where d is the metric on V. The term "poset" [1, p. 1] will be used to refer to a pair (W, R) such that W is a set and R is a partial order relation on W.

THEOREM 1. If G is a finite open covering of V and B is a P-basis of V, then there is an open refinement H_B of G such that $|(H_B)_x| \leq |B|$ for each $x \in V$.

PROOF. Assume that G is a finite open covering of V, and that B is a P-basis of V. Since $P(\emptyset) = \emptyset$ and $P(\{x\}) = \{x\}$ for each $x \in V$, it follows that if $B = \emptyset$ or $B = \{x\}$ for some $x \in V$, then V = P(B) = B, so that $G = \{V\}$. Hence, if $B = \emptyset$ or $B = \{x\}$ for some $x \in V$, then let $H_B = G$. Consider the case that |B| > 1. Let $b \in B$. Using Hausdorff's maximal principle [1,

p. 192], extend the chain $\{\varnothing\}$ of the poset $(2^{B-\{b\}},\subseteq)$ to a maximal chain K of $(2^{B-\{b\}},\subseteq)$. Since G is finite, then $\bigcap G_x$ is open for each $x\in V$ and each element of the poset $(\{G_x:x\in V\},\subseteq)=\{G_x:x\in V\}$ is preceded by some minimal element of $\{G_x:x\in V\}$. Since P is monotone and B is P-independent, it follows that each subset of B is P-independent. Hence, since $\varnothing\in K$ and $P(\varnothing)=\varnothing$, it follows that the collection H of all $(\bigcap G_x)\cap [V-P(X)]$ such that G_x is a minimal element of $\{G_y:y\in V\}$ and $X\in K$ is an open refinement of G. Assume that $x\in V$. Choose a minimal element G_c of $\{G_y:y\in V\}$ such that $G_c\subseteq G_x$. Then $\bigcap G_x\subseteq\bigcap G_c$ while $x\in\bigcap G_x$. It follows that the elements of H_x are among the sets $(\bigcap G_y)\cap [V-P(X)]$ such that $X\in K$ and G_y is a minimal element of $\{G_z:z\in V\}$ while $|\{V-P(X):X\in K\}|=|B|$. Therefore, $|H_x|\leqq|B|$. Let $H_B=H$. The proof is complete.

THEOREM 2. If V is a metric space and P has property (*) while B is a finite P-basis of V, then there is a finite open covering G_B of V such that if H is an open refinement of G_B , then $|H_x| \ge |B|$ for some $x \in V$.

Assume that V is a metric space such that P has property (*)while B is a finite P-basis of V. If $B=\emptyset$ or $B=\{x\}$ for some $x \in V$, then let $G_B = \{V\}$. Consider the case that |B| > 1. Let n be a positive integer such that |B| = n+1. Let B consist of exactly n+1 elements x_i of V, with $1 \le i \le n+1$. Let $X_{n+1} = B$. If $0 \le k \le n$, then let $X_{n-k} = X_{(n-k)+1} - \{x_{n-k}\}$. Let r be a positive real number. Let G consist of precisely the following sets: $P(X_k)_r$, with $1 \le k \le n$ and $X_0 = \emptyset$. Since P(Z) is closed for each $Z \subseteq V$, it follows that G is a finite collection of open subsets of V. Consider any element x of V. If $x \in P(X_1)$, then $x \in [P(X_1)_r - P(X_{k-1})] \subseteq \bigcup G$. If $x \notin P(X_1)$, let m be the largest positive integer such that $x \in P(X_m)$, so that $x \in [P(X_{m+1})_r - P(X_m)] \subseteq \bigcup G$. It follows that G is a finite open covering of V. Assume that H is an open refinement of G. If $1 \le k \le n+1$, let H_k be the collection of all $X \in H$ such that $x \in X$ for some $x \in [P(X_k) P(X_{k-1})$]. Since $x_1 \in [P(X_1) - P(X_0)]$, then H_1 contains an element Y_1 . It follows from (*) that $Y_1 - P(X_1)$ contains an element Y_1 of $P(X_2)$, so that $y_1 \in [P(X_2) - P(X_1)]$. Hence $y_1 \in Y_2$ for some $Y_2 \in H_2$ such that $Y_2 \notin H_1$. If $n \ge 2$, then it follows from (*) that $(Y_1 \cap Y_2) - P(X_2)$ contains an element y_2 of $P(X_3)$, so that $y_2 \in [P(X_3) - P(X_2)]$ and $Y_2 \notin [P(X_i) - P(X_{i-1})]$ if $1 \le i \le 2$. It follows by induction that there is a collection $\{Y_i : 1 \le i \le n\}$ of elements of H such that if $1 \le k \le n$, then $(\bigcap \{Y_i: 1 \le i \le k\}) - P(X_k)$ contains an element y_k of $P(X_{k+1})$ while $Y_i \notin H_j$ if $1 \le j < i \le k$. It follows that $y_n \in [P(X_{n+1}) - P(X_n)]$ and $y_n \notin [P(X_i) - P(X_{i-1})]$ if $1 \le i \le n$. Let $x=y_n$. Then $x \in Y_{n+1}$ for some $Y_{n+1} \in H_{n+1}$ such that $Y_{n+1} \notin H_i$ if $1 \le i \le n$. It follows that $\{Y_i: 1 \le i \le n+1\} \subseteq H_x$, so that $|H_x| \ge n+1$. Therefore, $|H_y| \ge |B|$ for some $y \in V$. The proof is complete.

THEOREM 3. If V is a metric space and P has property (*) while B is a finite P-basis of V, then $\dim_P V = |B| - 1$.

PROOF. Suppose that V is a metric space such that P has property (*) while B is a finite P-basis of V. It follows from Theorem 1 that if G is a finite open covering of V, then there is an open refinement H_B of G such that $|(H_B)_x| \le |B|$ for each $x \in V$. Application of Theorem 2 yields a finite open covering G_B of V such that if H is an open refinement of G_B , then $|H_x| \ge |B|$ for some $x \in V$. Therefore, $\dim_P V = |B| - 1$. The proof is complete.

COROLLARY. If V is a metric space and P has property (*) while V has a finite P-basis and P-dim V exists, then $\dim_P V = [P-\dim V] - 1$.

The linear variety structure Q in E^n is a closure structure having the exchange property and property (*), Q-dim E^n exists and E^n has a finite Q-basis of exactly n+1 elements. Therefore, dim $_Q E^n = n$.

REFERENCES

- 1. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R.I., 1967. MR 37 #2638.
- 2. M. N. Bleicher and E. Marczewski, Remarks on dependence relations and closure operators, Colloq. Math. 9 (1962), 209-212. MR 26 #58.
- 3. M. N. Bleicher and G. B. Preston, Abstract linear dependence relations, Publ. Math. Debrecen 8 (1961), 55-63. MR 24 #A124.
- 4. J. Hall, Jr., The independence of certain axioms of structures in sets, Proc. Amer. Math. Soc. 31 (1972), 317-325. MR 45 #141.
- 5. J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380.

DEPARTMENT OF MATHEMATICS, STILLMAN COLLEGE, TUSCALOOSA, ALABAMA 35401