NEGLIGIBILITY IN NONLOCALLY CONVEX SPACES¹

CHARLES A. RILEY

ABSTRACT. A negligibility theorem is established in a linear topological space without assuming the existence of a convex body or linearly bounded open set.

- 1. A set A in a topological space X is negligible if X is homeomorphic to $X \setminus A$. Negligibility investigations in linear topological spaces include [1], [2], [3], [4], [6], and [7]. Using shrinkable neighborhoods of Ives [5] and Klee [8], we adapt methods of Bessaga and Klee to prove the following theorem.
- (1.1) THEOREM. Suppose (X, τ_1) is a linear topological space admitting a linear topology $\tau_2 \subset \tau_1$ such that (X, τ_2) is metrizable and incomplete, and that K is τ_2 -compact, U is τ_2 -open with $[0, 1]K \subset U$. Then there is a τ_1 -homeomorphism $h: X \rightarrow X \setminus K$ with $h \mid X \setminus U = Id$.
- (1.2) COROLLARY. Suppose (X, τ_1) is a metrizable complete linear topological space, and τ_2 is metrizable and strictly weaker than τ_1 . If K, U are as in (1.1), the conclusion holds.
- (1.3) COROLLARY. Let M be the space of a.e. finite Lebesgue measurable functions, S the simple functions, and C the continuous functions, all on [0, 1]. If $S \subset X \subseteq M$ or $C \subset X \subseteq M$, and if convergence in X implies convergence in measure, then subsets of X which are compact in M (with the topology of convergence in measure) are negligible in X.
- (1.4) COROLLARY. Suppose the hypotheses of (2.1) hold, except $U \in \tau_1$, K is τ_1 -compact, and τ_2 contains a linearly bounded set. Then the conclusion of the theorem holds.

It follows from (1.3) that *M*-compact sets are negligible in L^p , p>0. A case of Anderson's result on α -spaces [1] follows from the theorem.

Received by the editors March 30, 1972 and, in revised form, November 27, 1972 and February 8, 1973.

AMS (MOS) subject classifications (1970). Primary 57A20; Secondary 46A15.

Key words and phrases. Negligibility, shrinkable set, star-shaped set, convergence in measure.

¹ This paper is part of the author's Ph.D. thesis which was done under the direction of Professor D. E. Sanderson.

An α -space is an infinite dimensional linear topological space with a Schauder basis $\{b_n\}$, continuous coordinates, and an open neighborhood U of 0 such that $b_n \notin U$ for each n. If (X, τ) is an α -space, then X may be regarded as a linear subspace of s. If $X \neq s$, then $\tau_1 | X \subset \tau$, where τ_1 is the topology of coordinatewise convergence, and X is dense in (s, τ_1) , since if $x \in s$, $(x_1, x_2, \dots, x_n, 0, 0, \dots) \in X$, and $\to x$. Thus (X, τ_1) is incomplete, and the theorem applies to show τ_1 -compact sets negligible. If X = s, and X is metrizable, again $\tau_1 \subset \tau$ and $b_n \to O(\tau_1)$, but $b_n \mapsto O(\tau)$ since $b_n \notin U$. By the open mapping theorem, (X, τ_1) is incomplete, and again τ_1 -compact sets are negligible in (X, τ) .

If U is a set in a linear topological space, and $p \in \text{Int } U$, then U is shrinkable at p if $[0,1)(U-p) \subset \text{Int}(U-p)$. Notice that each ray r from p meets Bd U at most once, and that $r \cap \bar{U}$ is closed and connected. If U is shrinkable at p, the gauge functional $\gamma_U(x,p)$ is defined by $x=p+\gamma_U(x,p)(\pi_U(x,p)-p)$ in case ray px meets Bd U in $\pi_U(x,p)$. If $px \subset U$ or x=p, then $\gamma_U(x,p)=0$. Ives [5] has shown that $\gamma_U(x,p)$ is continuous in x. It follows that $\pi_U(x,p)$, as a function of x, is continuous on its domain. According to Klee [8], each Hausdorff linear topological space has a basis at 0 of open sets, shrinkable at 0. A set A in a linear space is star-shaped at $a \in A$ if $tx+(1-t)a \in A$ whenever $x \in A$, $t \in [0, 1)$. In the following [A] will denote the convex hull of A.

(1.5) LEMMA. Suppose X is a metrizable linear topological space and K, $W \subseteq X$ with K compact, W open and shrinkable at 0. If $x \in X$, $k \in K$ and r > 0, then $\{k + \lambda(x-k) | \lambda \ge 0\} \subseteq K + rW$ if and only if $\{\lambda(x-k) | \lambda \ge 0\} \subseteq W$.

PROOF. Assume the first inclusion, and take $\lambda \ge 0$. For each n, $k+nr(x-k) \in K+rW$, so that $k+nr(x-k)=k_n+rw_n$ with $k_n \in K$, $w_n \in W$, and $w_n=(1/r)(k-k_n)+n(x-k) \in W$. $\{k_n\}$ has a convergent subsequence $\{k_{n_l}\}$. If l is large,

$$(\lambda + 1)/n_1 < 1$$
, and $((\lambda + 1)/n_1)((1/r)(k - k_n) + n_1(x - k)) \in W$.

Letting $l \to \infty$, $(\lambda + 1)(x - k) \in \overline{W}$. Therefore $\lambda(x - k) \in W$. The converse is clear.

Proofs of the following lemmas are straightforward and omitted. Lemma (1.9) is due to Klee [8].

- (1.6) LEMMA. Let Y be a linear subspace of a linear topological space $X, y \in Y$, and U open, shrinkable at y. Then $U \cap Y$ is shrinkable at y in Y.
- (1.7) LEMMA. Let (X, τ_1) be a linear topological space, and τ_2 a weaker linear topology for X. If $U \in \tau_2$ is τ_2 -shrinkable at 0, then U is τ_1 -shrinkable at 0, $\bar{U}^{\tau_1} = \bar{U}^{\tau_2}$, and $\mathrm{Bd}_{\tau_1} U = \mathrm{Bd}_{\tau_2} U$.

- (1.8) LEMMA. If X is a linear space, and A, $B \subseteq X$ with A star-shaped at $x \in A$, then $C = \bigcup \{\lambda A + (1 \lambda)B | \lambda \in [0, 1]\}$ is star-shaped at x.
- (1.9) LEMMA. If U is open, shrinkable at 0, and K is compact, star-shaped at $k \in K$, then U+K is shrinkable at k. In particular, if K is convex, U+K is shrinkable at each point of K.

We now prove (1.1). Let \tilde{X} be a linear metric completion of (X, τ_2) , and $\{\tilde{W}_n\}$ a basis of open sets, shrinkable at 0, with $\tilde{W}_n \subset W_{n-1}$. $U = \tilde{U} \cap X$ for some open \tilde{U} . Using $[0, 1]K \subset U$ and the compactness of K, we can find $\tilde{x} \in \tilde{X} \setminus X$ such that $\bigcup \{\lambda \tilde{x} + (1-\lambda)K \mid \lambda \in [0, 1]\} \subset \tilde{U}$. Let $y_n \to \tilde{x}$ with $y_n \in U$. Again the compactness of K implies the existence of n_1 such that

$$\bigcup \left\{ \lambda[\tilde{x}, y_{n_1}] + (1 - \lambda)K \, \middle| \, \lambda \in [0, 1] \right\} \subset \tilde{U}.$$

Let $x_1=y_{n_1}$ and $\tilde{K}_1=\bigcup \{\lambda[\tilde{x},x_1]+(1-\lambda)K\big|\lambda\in[0,1]\}$, a compact subset of \tilde{U} . There exists l_1 such that $(\tilde{K}_1+3\tilde{W}_{l_1})^-\subset\tilde{U}$. Let

$$\begin{split} \widetilde{A}_1 &= \left[\tilde{x}, \, x_1 \right] + \, \widetilde{W}_{l_1}, & A_1 &= \, \widetilde{A}_1 \, \cap \, X, \\ \widetilde{B}_1 &= \left[\tilde{x}, \, x_1 \right] + 2 \, \widetilde{W}_{l_1}, & B_1 &= \, \widetilde{B}_1 \, \cap \, X, \\ \widetilde{C}_1 &= \, \widetilde{K}_1 + 2 \, \widetilde{W}_{l_1}, & C_1 &= \, \widetilde{C}_1 \, \cap \, X, \\ \widetilde{D}_1 &= \, \widetilde{K}_1 + 3 \, \widetilde{W}_{l_1}, & D_1 &= \, \widetilde{D}_1 \, \cap \, X. \end{split}$$

By (1.8), (1.9), (1.6) and (1.7), A_1 , B_1 , C_1 and D_1 are τ_1 -shrinkable at x_1 .

$$\bar{A}_1 = \tilde{A}_1 \cap X = ([\tilde{x}, x_1] + \tilde{W}_{l_1}) \cap X
= ([\tilde{x}, x_1] + \tilde{W}_{l_1}) \cap X \subset ([\tilde{x}, x_1] + 2\tilde{W}_{l_1}) \cap X = B_1.$$

Similarly we get $\bar{A}_1 \subset B_1 \subset C_1 \subset \bar{C}_1 \subset D_1$. The statements $\{x_1 + \lambda(x - x_1) | \lambda \geq 0\}$ $\subset A_1, \ \subset B_1, \ \subset C_1, \ \subset D_1$ are equivalent by (1.5). Now we define $h_1 : X \to X$. $h_1 | \bar{A}_1 \cup (X \setminus D_1) = \mathrm{Id}$. $h_1 | \bar{B}_1 \setminus A_1 : \bar{B}_1 \setminus A_1 \to \bar{C}_1 \setminus A_1$ is defined as follows. If $y \in \bar{B}_1 \setminus A_1$, then $\pi_{A_1}(y, x_1)$ is defined and, by the above remark, so are $\pi_{B_1}(y, x_1)$, $\pi_{C_1}(y, x_1)$ and $\pi_{D_1}(y, x_1)$. If r is a ray from x_1 , intersecting $\mathrm{Bd}\ A_1$, h_1 maps $(\bar{B}_1 \setminus A_1) \cap r$ linearly onto $(\bar{C}_1 \setminus A_1) \cap r$. Thus,

$$h_1(y) = \pi_{A_1}(y, x_1) + \frac{\gamma_{A_1}(y, x_1) - 1}{\gamma_{A_1}(\pi_{B_1}(y, x_1), x_1) - 1} (\pi_{C_1}(y, x_1) - \pi_{A_1}(y, x_1)),$$

is a continuous function. $h_1|\bar{B}_1\backslash A_1$ has an inverse of the same form, so it is a homeomorphism. Similarly, we define $h_1|\bar{D}_1\backslash B_1:\bar{D}_1\backslash B_1\to \bar{D}_1\backslash C_1$. h_1 is then a homeomorphism. Another compactness argument shows there exists $n_2>n_1$ such that

$$[\tilde{x}, y_{n_2}] \subseteq \tilde{A}_1$$
 and $\bigcup \{\lambda[\tilde{x}, y_{n_2}] + (1 - \lambda)K \mid \lambda \in [0, 1]\} \subseteq \tilde{C}_1$.

Let $x_2=y_{n_2}$, $\tilde{K}_2=\bigcup \{\lambda[\tilde{x},x_2]+(1-\lambda)K\big|\lambda\in[0,1]\}$. Then $[\tilde{x},x_2]\subseteq\tilde{A}_1$, $\tilde{K}_2\subseteq\tilde{C}_1$ and there exists $l_2>l_1$ such that $([\tilde{x},x_2]+2\tilde{W}_{l_2})^-\subseteq\tilde{A}_1$, $(\tilde{K}_2+3\tilde{W}_{l_2})^-\subseteq\tilde{C}_1$. Let

$$\begin{split} \widetilde{A}_2 &= \left[\tilde{x}, \, x_2 \right] + \, \widetilde{W}_{l_2}, & A_2 &= \, \widetilde{A}_2 \, \cap \, X, \\ \widetilde{B}_2 &= \left[\tilde{x}, \, x_2 \right] + 2 \, \widetilde{W}_{l_2}, & B_2 &= \, \widetilde{B}_2 \, \cap \, X, \\ \widetilde{C}_2 &= \, \widetilde{K}_2 + 2 \, \widetilde{W}_{l_2}, & C_2 &= \, \widetilde{C}_2 \, \cap \, X, \\ \widetilde{D}_2 &= \, \widetilde{K}_2 + 3 \, \widetilde{W}_{l_2}, & D_2 &= \, \widetilde{D}_2 \, \cap \, X. \end{split}$$

As before, A_2 , B_2 , C_2 , D_2 are τ_1 -shrinkable at x_2 , $\bar{A_2} \subset B_2 \subset C_2 \subset \bar{C_2} \subset D_2$, and the statements $\{x_2 + \lambda(x - x_2) | \lambda \ge 0\} \subset A_2$, $\subset B_2$, $\subset C_2$, $\subset D_2$ are equivalent. Also $\bar{B_2} \subset A_1$ and $\bar{D_2} \subset C_1$. Define $h_2: X \to X$ so that

$$h_2 \mid \bar{A}_2 \cup (X \setminus D_2) = \text{Id}, \quad h_2 \mid \bar{B}_2 \setminus A_2 : \bar{B}_2 \setminus A_2 \to \bar{C}_2 \setminus A_2,$$

 $h_2 \mid \bar{D}_2 \setminus B_2 : \bar{D}_2 \setminus B_2 \to \bar{D}_2 \setminus C_2.$

Note $h_2|X\setminus C_1=\text{Id}$. Continue, obtaining sets

$$\begin{array}{cccc} D_1 \supset C_1 \supset B_1 \supset A_1 \\ & \cup & & \cup \\ & D_2 \supset C_2 \supset B_2 \supset A_2 \\ & \cup & & \cup \\ & D_3 \supset C_3 \supset B_3 \supset A_3 \end{array}$$

and homeomorphisms $h_n: X \rightarrow X$ with

$$\begin{split} h_n \mid \bar{A}_n \cup (X \backslash D_n) &= \mathrm{Id}, \\ h_n \mid \bar{B}_n \backslash A_n &: \bar{B}_n \backslash A_n \to \bar{C}_n \backslash A_n, \\ h_n \mid \bar{D}_n \backslash B_n &: \bar{D}_n \backslash B_n \to \bar{D}_n \backslash C_n, \\ h_n \mid X \backslash C_{n-1} &= \mathrm{Id}. \end{split}$$

We claim $\bigcap \bar{A}_n = \bigcap \bar{B}_n = \varphi$. Since $\bar{A}_n \subset \bar{B}_n \subset A_{n-1} \subset B_{n-1}$, it is sufficient to show $\bigcap B_n = \varphi$. If $y \in \bigcap B_n$, then $y \in X$, and $y \in [\tilde{x}, x_n] + 2\tilde{W}_{l_n}$, so that $y = \tilde{x}$, a contradiction. Also $\bigcap \bar{C}_n = \bigcap \bar{D}_n = K$. Suppose $y \in \bigcap D_n$. Then $y \in X$ and $y \in \tilde{K}_n + 3\tilde{W}_{l_n}$, so that $y = \lambda \tilde{x} + (1 - \lambda)k$. If $\lambda \neq 0$, $\tilde{x} = (1/\lambda)(y - (1 - \lambda)k) \in X$, a contradiction. Therefore $y = k \in K$. Thus $K \subset \bigcap \bar{C}_n \subset \bigcap \bar{D}_n \subset \bigcap D_n \subset K$, since $\bar{D}_n \subset C_{n-1} \subset D_{n-1}$. If we trace the motion of a point $x \in X$ under the successive homeomorphisms h_1, h_2, \cdots , we see $x \notin \bar{B}_n$ for some n, and $h_{n+k} \cdots h_2 h_1 | X \setminus \bar{B}_n = h_n \cdots h_2 h_1 | X \setminus \bar{B}_n$. Thus

we may define a homeomorphism h on X by $h(x) = \cdots + h_2 h_1(x)$. It is not hard to see h is onto $X \setminus K$. Since $X \setminus U \subseteq X \setminus D_1$, evidently $h \mid X \setminus U = \text{Id}$.

Corollary (1.2) is proved by noting $\operatorname{Id}:(X,\tau_1)\to(X,\tau_2)$ is not an open map, so the open mapping theorem implies τ_2 is incomplete. For Corollary (1.3) note that X with the topology of convergence in measure is incomplete, since it is dense and a proper subspace of M. Finally, we prove Corollary (1.4).

Using the hypothesis we can find $U_1 \in \tau_1$, $V_1 \in \tau_2$, both linearly bounded and τ_1 -shrinkable at zero, with $[0, 1]K \subset U_1 \subset U$ and $U_1 \subset V_1$. Since [0, 1]K is τ_1 -compact, $[0, 1]K \subset rU_1$ for some $r \in (0, 1)$. There is a τ_1 -homeomorphism $j: X \to X$ such that

$$j \mid r\bar{U}_1 \cup (X \setminus 2V_1) = \mathrm{Id}, \quad j \mid \bar{U}_1 \setminus rU_1 : \bar{U}_1 \setminus rU_1 \to \bar{V}_1 \setminus rU_1,$$

and

$$j \mid 2\bar{V}_1 \backslash U_1 : 2\bar{V}_1 \backslash U_1 \rightarrow 2\bar{V}_1 \backslash V_1.$$

By the theorem, there exists a τ_1 -homeomorphism $h: X \to X \setminus K$ such that $h|X \setminus V_1 = \text{Id}$. Then $j^{-1}hj: X \to X \setminus K$ is a τ_1 -homeomorphism fixed on $X \setminus U$.

- 2. In the proof of (1.1), the homeomorphisms Id, h_1 , h_2h_1 , $h_3h_2h_1$, \cdots may be regarded as successive stages of an isotopy whose final homeomorphism is $h: X \rightarrow X \setminus K$. There are obvious ways to fill the gaps, but the details are tedious. The statement of the isotopy theorem below is patterned after Klee's [6], and the corollary extends his theorem to an arbitrary normed linear space. A full development of these results will appear elsewhere.
- (2.1) THEOREM. Suppose (X, τ_1) is a linear topological space admitting a metrizable incomplete linear topology $\tau_2 \subset \tau_1$. If $U \in \tau_2$ and K is τ_2 -compact with $[0, 1]K \subset U$, then there exists a τ_1 -embedding $H: X \times [0, 1] \to X \times [0, 1]$ such that if $f_t(x) = p_1 H(x, t)$ (projection on the first coordinate) for $t \in [0, 1]$, then $\{f_t\}$ has the following properties.
 - 1. $f_t: X \to X$ is a τ_1 -homeomorphism for each $t \in [0, 1)$.
 - 2. $f_0 = Id$.
 - 3. $f_1: X \rightarrow X \setminus K$ is a τ_1 -homeomorphism.
 - 4. For each $t \in [0, 1], f_t | X \setminus U = Id$.
- 5. $\lim_{t\to 1} f_1 f_t^{-1} = \operatorname{Id}_X(\tau_1)$ and $\lim_{t\to 1} f_t f_1^{-1} = \operatorname{Id}_{X\setminus K}(\tau_1)$ with the convergence uniform on each τ_2 -compact set.
- (2.2) COROLLARY. Suppose the hypotheses of the theorem hold, except that $U \in \tau_1$, K is τ_1 -compact and $[0, 1]K \subset U$. Suppose also τ_2 contains a linearly bounded set. Then the conclusions of the theorem hold (with limits uniform on τ_1 -compact sets).

REFERENCES

- 1. R. D. Anderson, On a theorem of Klee, Proc. Amer. Math. Soc. 17 (1966), 1401-1404. MR 34 #4864.
- 2. R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 37 #5837.
- 3. C. Bessaga and V. L. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), 211-220. MR 31 #5055.
- 4. C. Bessaga, Negligible sets in linear topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 117-119. MR 37 #1946.
- 5. R. T. Ives, Semi-convexity and locally bounded spaces, Ph.D. thesis, Univ. of Washington, Seattle, Wash., 1957.
- 6. V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10-43. MR 14, 989.
- 7. ——, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674. MR 17, 1227.
- 8. ——, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285. MR 24 #A1003.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50010

DEPARTMENT OF MATHEMATICS, KEENE STATE COLLEGE, KEENE, NEW HAMPSHIRE 03431 (Current address)