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NEGLIGIBILITY IN NONLOCALLY  CONVEX SPACES1

CHARLES  A.   RILEY

Abstract. A negligibility theorem is established in a linear

topological space without assuming the existence of a convex body

or linearly bounded open set.

1. A set A in a topological space X is negligible if X is homeomorphic

to X\A. Negligibility investigations in linear topological spaces include

[1], [2], [3], [4], [6], and [7]. Using shrinkable neighborhoods of Ives [5]

and Klee [8], we adapt methods of Bessaga and Klee to prove the following

theorem.

(1.1) Theorem. Suppose (X, tx) is a linear topological space admitting

a linear topology tíc^t1 such that (X, t2) is metrizable and incomplete,

and that K is r2-compact, U is r2-open with [0, l]K<^ rj Then there is a

TX-homeomorphism h:X-^-X\K with h\X\U=ld.

(1.2) Corollary. Suppose (X, t,) is a metrizable complete linear

topological space, and r2 is metrizable and strictly weaker than rx. If K, U

are as in (1.1), the conclusion holds.

(1.3) Corollary. Let M be the space of a.e. finite Lebesgue measurable

functions, S the simple functions, and C the continuous functions, all on

[0, 1]. IfS^X^Mor C^X^M, and if convergence in X implies conver-

gence in measure, then subsets of X which are compact in M (with the

topology of convergence in measure) are negligible in X.

(1.4) Corollary. Suppose the hypotheses of (2.1) hold, except U e t1(

K is Ty-compact, and t2 contains a linearly bounded set. Then the con-

clusion of the theorem holds.

It follows from (1.3) that Af-compact sets are negligible in Z.", p>0.

A case of Anderson's result on a-spaces [1] follows from the theorem.
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An a-space is an infinite dimensional linear topological space with a

Schauder basis {£>„}, continuous coordinates, and an open neighborhood

U of 0 such that bn$ U for each n. If (X, t) is an a-space, then X may be

regarded as a linear subspace of s. If X^s, then t^Ict, where tx is the

topology of coordinatewise convergence, and X'vs, dense in (s, tj), since if

x e s, (Xj, x2, ■ ■ ■ , xn, 0, 0, • • •) g X, and -*-x. Thus (X, tj) is incom-

plete, and the theorem applies to show ^-compact sets negligible. If

X=s, and X is metrizable, again r^r and bn-+0{T^), but ¿?k-h-0(t)

since bn $ U. By the open mapping theorem, (X, tx) is incomplete, and

again -^-compact sets are negligible in (X, t).

If U is a set in a linear topological space, and p e Int U, then U is

shrinkable at p if [0, l)(U—p)~<=lnt(U—p). Notice that each ray r from

p meets Bd U at most once, and that rC\Ü is closed and connected. If i/

is shrinkable at p, the gauge functional yv{x,p) is defined by x=p +

yu{x,p)(iTU{x,p)—p) in case ray px meets Bd [/ in TTrj(x,p). Kpx^U

or *=/>, then yu(x,p)=Q. Ives [5] has shown that yu{x,p) is continuous

in x. It follows that tttj(x,p), as a function of x, is continuous on its

domain. According to Klee [8], each Hausdorff linear topological space

has a basis at 0 of open sets, shrinkable at 0. A set A in a linear space is

star-shaped at a 6 A if tx+(l — t)a e A whenever x e A, t e [0, I). In the

following [A] will denote the convex hull of A.

(1.5) Lemma. Suppose X is a metrizable linear topological space and

K, W<^ X with K compact, W open and shrinkable atQ.IfxeX,k<=K and

r>0, then {k+X(x-k)\X^0}<^ K+rW if and only if {X(x-k)\X^0}^ W.

Proof. Assume the first inclusion, and take A^0. For each n,

k+nr(x—k)e K+rW, so that k+nr(x—k)=kn+rwn with kneK,

wneW, and wn = (l¡r)(k—kn)+n(x—k) e W. {kn} has a convergent

subsequence {kn }. If / is large,

a+l)M<l,   and   ((A + l)/»0((l/rXfc - kn) + n,(x - fc)) 6 W.

Letting /->-oo, (A+l)(x—k) e W. Therefore l{x—k) e W. The converse is

clear.

Proofs of the following lemmas are straightforward and omitted. Lemma

(1.9) is due to Klee [8].

(1.6) Lemma. Let Y be a linear subspace of a linear topological space

X, y e Y, and U open, shrinkable at y. Then UC\ Y is shrinkable at y in Y.

(1.7) Lemma. Let (X, tx) be a linear topological space, and r2 a weaker

linear topology for X. If U e r2 is r2-shrinkable at 0, then Uis r^shrinkable

atO, ÜTl=ÜT*, and BdT  U=BdT  U.
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(1.8) Lemma. If X is a linear space, and A, B^X with A star-shaped at

xeA, then C=\J {XA + (l—X)B\Xe [0, 1]} is star-shaped at x.

(1.9) Lemma. If U is open, shrinkable at 0, and K is compact, star-

shaped at k 6 K, then U+K is shrinkable at k. In particular, if K is convex,

U+K is shrinkable at each point of K.

We now prove (1.1). Let X be a linear metric completion of (X, t2),

and {Wn} a basis of open sets, shrinkable at 0, with W~<^ Wn_x. U=

0 C\X for some open 0. Using [0, \]K<= U and the compactness of K, we

can find x e X\X such that |J {Xx+{\-X)K\X e [0, 1]}<=Ü. Let yn-+x

with yn e U. Again the compactness of K implies the existence of nx such

that

UW^nJ + O -A)#|Ae[0,l]}c 0.

Let xx=yni and Ky = {J {X[x, Xjl+il —yl)Ä"j/l e [0, 1]}, a compact subset

of 0. There exists /, such that (K1 + 3Wh)~<= 0. Let

Â = [x, Xy] + Wh, Ay = Äy n X,

By   =    [X,  Xy]   +   2Wh, By   =   By    H   X,

Cy   =   Ky   +   2Wh, Cy=Cy^X,

ßy   =   Ky   +   3Wh, Dy=DyC\X.

By (1.8), (1.9), (1.6) and (1.7), Ay, By, Cy and Z>, are Tx-shrinkable at xv

Ay = AT n X = ([x, Xy] + WHr n X

= (I*,xy] + tjnic ([x,xy] + 2Wh)nx = By.

Similarly we get i^^cQcQc Dy. The statements {xy+X(x—Xy)\X}>0}

CA> cfij, cQ, c/jj are equivalent by (1.5). Now we define hy.X^-X.

A1|^'1U(A'\£)1) = Id. hy\By\Ay.By\Ay->Cy\Ay is defined as follows. If

y g By\Ay, then tta (y, Xy) is defined and, by the above remark, so are

-n-ß^y, Xy), 77Ci(j, Xy) and ttd (y, Xy). If r is a ray from xlt intersecting

Bd Ay, hy maps (Bx\Ay)r\r linearly onto {Cy\A1)nlr. Thus,

yA(y, Xy) — 1
h(y)   =    "Ay,  Xy)   +-"-  (lTC (V,   Xy)   -   TTA(y,  Xy)),

YA^Bp,  Xy),   Xy)   -    1

is a continuous function. hy\By\Ay has an inverse of the same form, so it is

a homeomorphism. Similarly, we define hy\Dy\By\ Dy\By->-Dy\Cy. hy is then

a homeomorphism. Another compactness argument shows there exists

«2>«1 such that

[x,yn%] c Äy   and    (J {A[2,jU T(l-í)íUe [0, 1]} e £.
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Let   x2=yni,   ^,= U{A[Ä,*J + (1-A)A:|A6[0, 1]}.   Then   [x,x^Äj,
K^C^   and   there   exists   l2>h   such   that    ([x, x2]+2Wh)   <=Ält

Ä2 = [x, x2] + Wh, A2 = Ä2C\ X,

B2 = [x, x2] + 2 Wh, B2 = B2n X,

C2 = K2 + 2rVh, C2=C2nX,

D2 = K2 + 3Wh, D2 = D2nX.

As before, A2, B2, C¡¡, D2 are Tvshrinkable at x2, Ä2<=B2c C2c C2c D2,

and the statements {x2+A(x—x2)\^0}^A2, <=B2, cQ, cD2 are

equivalent. Also B2'^A1 and D^C^ Define h2:X-^-X so that

h21 Ä2 u (X\D2) - Id,       Ä21 B2\A2:B2\A2 -> C2\^2,

A2| D2\B2:D2\B2^ D2\C2.

Note /î2|Ar\C1=Id. Continue, obtaining sets

U U

D2 = C2 = ,S2 = A2

U U

£>3 ̂  C3 => 53 => J3

and homeomorphisms hn : X-^>-X with

K | ^„ U (X\Dn) = Id,

Âs|5B\^:5n\^-vC.V„,

K | x\cn_x = id.

We claim f] An — Ç\ Bn=<p. Since I.c^ci^c^j, it is sufficient

to show H Bn=q>. If y e f] Bn, then y e X, and 7 e [x, xn]+2ÍVln, so

that 7=Jc, a contradiction. Also P) Cn=n Dn=K. Suppose/ e p) Z)„.

Then ycX and je^+3^, so that y=Xx+{\-X)k. If ¿=¿0, Jc=

(l¡X)(y-(l-X)k)eX, a contradiction. Therefore y=k g K. Thus #<=

H C„cn^»<=n ^>»c^. since iî.cC^c £„_!. If we trace the motion

of a point x £ X under the successive homeomorphisms hu h2, • ■ ■ , we

see x $ Bn for some n, and /z„+J. ■ • • h2h1\X\Bn=hn • ■ • A2A1|Ar\57l. Thus
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we may define a homeomorphism A on I by h(x) = - ■ • h2hy(x). It is not

hard to see h is onto X\K. Since X\U<=-X\Dy, evidently h\X\U=ld.

Corollary (1.2) is proved by noting ld:(X, Ty)-f(X, t2) is not an open

map, so the open mapping theorem implies t2 is incomplete. For Corollary

(1.3) note that X with the topology of convergence in measure is incom-

plete, since it is dense and a proper subspace of M. Finally, we prove

Corollary (1.4).

Using the hypothesis we can find Uy e rlt Vx e t2, both linearly bounded

and ^-shrinkable at zero, with [0, l]K<= [/jC jj and Uy^Vy. Since

[0, \]K is ^-compact, [0, l]K<=rUy for some r e (0, 1). There is a tx-

homeomorphismy':Ar->-lrsuch that

j | rOy u {X\2V¿ = Id,      j | Oy\rUy : 01\rU1 - P1\rU1,

and

j\2Vy\Uy:2Vy\Uy^2Vy\Vy.

By the theorem, there exists a T^homeomorphism h:X-*-X\K such that

h\X\Vy = ld. Thenf~*hj:X—+X\K is a 7^-homeomorphism fixed on Af\{/.

2. In the proof of (1.1), the homeomorphisms Id, hy, h2hx, h3h2hy, ■ • •

may be regarded as successive stages of an isotopy whose final homeo-

morphism is h:X^*X\K. There are obvious ways to fill the gaps, but the

details are tedious. The statement of the isotopy theorem below is pat-

terned after Klee's [6], and the corollary extends his theorem to an

arbitrary normed linear space. A full development of these results will

appear elsewhere.

(2.1) Theorem. Suppose (X, tx) is a linear topological space admitting

a metrizable incomplete linear topology t2<=Ti. If U e t2 and K is t2-

compact with [0, 1]K<= U, then there exists a Ty-embedding H:Xx [0, 1]—►

Xx [0, 1] such that ifft(x)=pyH(x, t) {projection on the first coordinate)

for te [0, 1], then {/,} has the following properties.

1. ft:X—>X,is a Ty-homeomorphism for each te [0, 1).

2./0=Id.
3. fy-.X-^-X\Kis a Ty-homeomorphism.

4. For each t e [0, l],ft\X\U=ld.

5. Umt^yfyff1 = ldx(ry) and limt^y ftf I1 = ldx^K(ry) with the con-
vergence uniform on each r2-compact set.

(2.2) Corollary. Suppose the hypotheses of the theorem hold, except

that U e Ty, K is Ty-compact and [0, l]K<=- U. Suppose also t2 contains a

linearly bounded set. Then the conclusions of the theorem hold (with limits

uniform on Ty-compact sets).
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