COMPACT 2-MANIFOLDS AS MAXIMAL IDEAL SPACES

ALFRED G. BRANDSTEIN

ABSTRACT. It is shown that every compact 2-manifold is (homeomorphic to) the maximal ideal space of an antisymmetric algebra which is Dirichlet on its Šilov boundary.

Introduction. Wermer and Browder [3] have shown that the sphere and real projective plane can be obtained as the maximal ideal space of an antisymmetric Dirichlet algebra. The conjecture then arises that every compact 2-manifold can be so realized. We prove this conjecture. We follow, in part, the formats of [1] and [3].

Main result. As is well known, every compact 2-manifold may be realized from the unit disk by making appropriate identifications of subarcs of the unit circle. Given a manifold M, let us choose all of our identification homeomorphisms to be singular, i.e. each takes a set of Lebesgue measure 0 into a set of full measure. Let us call Ψ the union of these homeomorphisms, and C, which is a subset of the unit circle Γ , the domain of Ψ .

Recall a function algebra A on a space X is *Dirichlet* if the real parts of the function in A are dense in the real continuous functions on X.

DEFINITION 1. Let $B = \{ f \in C(\Delta) : f \text{ is analytic in } \operatorname{int}(\Delta) \}$, where $\Delta = \operatorname{closed}$ unit disk.

DEFINITION 2. Let $A = \{ f \in B : f(z) = f(\psi(z)) \text{ for all } z \in C \}$.

DEFINITION 3. $A_w = A$ restricted to C.

THEOREM. A is a Dirichlet algebra on C; its maximal ideal space is M and its \tilde{S} ilov boundary is C.

Definition 4. A (complex Borel) measure ν on Γ is odd if, for each Borel set $E \subseteq C$, $\nu(E) = -\nu(\Psi(E))$.

DEFINITION 5. H denotes the class of measures of the form g(z) dz where g is any function in the L^1 closure of B restricted to Γ .

DEFINITION 6. W is the space of measures $\mu + \nu$ with $\mu \in H$, ν odd; \overline{W} is the weak* closure of W in the space of measures on Γ .

Received by the editors November 13, 1972.

AMS (MOS) subject classifications (1970). Primary 46J10, 46J20.

Key words and phrases. 2-manifold, Dirichlet.

DEFINITION 7. A measure λ on Γ annihilates A if $\int f d\lambda = 0$, all $f \in A$. Clearly, every measure in W annihilates A. Also, if λ annihilates A, then $\lambda \in \overline{W}$.

LEMMA 1. If $\mu \in H$, ν is odd, then $\|\nu\| \le 16\|\mu + \nu\|$.

PROOF. Let E be any Borel subset of C and let m represent 1-dimensional Lebesgue measure. Then there are disjoint sets F and G with $E = F \cup G$, $m(F) = m(\psi(G)) = 0$. Let $K = \|\mu + \nu\|$, then $|\nu(F)| = |\nu(F) + \mu(F)| \le K$, since μ is absolutely continuous. $|\nu(G)| = |\nu(\psi)(G)| = |\mu + \nu(\psi(G))| \le K$, for the same reason. Hence $\|\nu\| \le 16K$. Q.E.D.

LEMMA 2. Then $W = \overline{W}$.

PROOF. $Q = [\mu + \nu : \mu \in H, \nu \text{ odd}, \|\mu\| \le 1, \|\nu\| \le 1]$ is compact. The Krein-Smulian theorem [4, p. 429] then implies that $W = \overline{W}$. Q.E.D.

LEMMA 3. If v is an odd measure, then v is absolutely continuous with respect to arc length iff v=0.

PROOF. Suppose ν is absolutely continuous. Let E be a Borel subset of C, then there are disjoint subsets F and G with $E=F\cup G$. Hence $\nu(F)=0$, since ν is absolutely continuous. $\nu(G)=-\nu(\Psi(G))=0$ for the same reason. Hence $\nu(E)=0$. Q.E.D.

LEMMA 4. Every real annihilator λ of A has the form $\lambda = v$.

PROOF. Since W is weak* closed, we conclude that if λ is a measure on Γ which annihilates A, then $\lambda = \mu + \nu$, $\mu \in H$, ν odd. Write $\mu = \mu_1 + i\mu_2$, $\nu = \nu_1 + i\nu_2$, with μ_1 , μ_2 , ν_1 , ν_2 real. If λ is real, $\mu_2 + \nu_2 = 0$. Hence ν_2 is absolutely continuous, hence 0. Then $\mu = 0$, while $\nu = \nu_1$.

LEMMA 5. A separates the points of C. Further given z_1 , z_2 with $z_1 \in \Delta$, $z_2 \in \Delta - C$ and $z_1 \neq z_2$, then there exists an f in A such that $f(z_1) \neq f(z_2)$.

PROOF. Let τ_1 , τ_2 be two points of C and let $\delta\tau_1$, $\delta\tau_2$ be the point masses at τ_1 , τ_2 , respectively. Unless A separates τ_1 , τ_2 , $\delta\tau_1-\delta\tau_2$ will be a real annihilating measure which is not in W. Now suppose z_1 , z_2 are interior to Δ and A fails to separate them. Let σ_1 , σ_2 be the harmonic measure for z_1 , z_2 respectively. Then $\sigma_1-\sigma_2$ would be a real annihilating measure. Hence $\sigma_1-\sigma_2=v$, v odd. However $\sigma_1-\sigma_2$ is absolutely continuous. A contradiction. Finally, if $z_1 \in C$ and z_2 is interior to Δ a similar argument applies. Q.E.D.

Lemma 6. The space of maximal ideals of $A_{\psi}(A)$ is homeomorphic to M.

PROOF. It must be shown that, if h is a homomorphism of A onto the complex numbers, then h is evaluation at some point of M. If h is not evaluation at any point of M, then for each $z \in \Delta$, there is an f_z with $h(f_z)=0, f_z(z)\neq 0$. Since M is compact, we can select a finite number of functions f_1 , f_n in A such that $h(f_i)$ and open sets Δ_i in Δ such that $\bigcup_{i=1}^n \Delta_i = \Delta$ and $f_i \neq 0$ in the closure $\bar{\Delta}_i$ of Δ_i . Let σ be a representing measure for h on Γ , i.e. $h(f)=\int f d\sigma$, all $f\in A$. Then $\int f\cdot f_i d\sigma = h(f\cdot f_i)=h(f)\cdot h(f_i)=0$ $i=1,2,\cdots,n,$ $f\in A$. Thus f_i $d\sigma$ annihilates A, therefore f_i $d\sigma=d\mu_i+d\nu_i$, $\mu_i\in H$, ν_i odd. Hence, $f_i(d\mu_i+d\nu_i)=f_if_i$ $d\sigma=f_i(d\mu_j+d\nu_j)$ and so f_i $d\mu_i-f_i$ $d\mu_j=f_i$ $d\nu_j-f_j$ $d\nu_i$. Since the right side is odd and the left side is absolutely continuous, both sides vanish. Let Φ_i dz denote the measure in H such that $d\mu_i=\Phi_i$ dz. Then $f_j\Phi_i=f_i\Phi_j$ a.e. on Γ and so $f_j\Phi_i=f_i\Phi_j$ also for $z\in \operatorname{int}\Delta$. We can therefore unambiguously define Φ on Δ by $\Phi(z)=\Phi_i(z)(f_i(z))^{-1}$ for $z\in \Delta_i$. Then Φ $dz\in H$.

We define a measure v on Γ by $dv = (f_i)^{-1} dv_i$ on Γ by $dv = (f_i)^{-1} dv_i$ on $\Gamma \cap \Delta_i$. Then v is well defined and odd. Then $f_i d\sigma = f_i \Phi dz + f_i dv$ on $\Gamma \cap \Delta_i$.

Since $f_i \neq 0$ on Δ_i we deduce $d\sigma = \Phi dz + dv$. But then $1 = \int d\sigma = \int \Phi dz + \int dv = 0$. Contradiction. Q.E.D.

PROOF OF THEOREM. Combine Lemmas 4, 5, and 6. Q.E.D.

REFERENCES

- 1. A. G. Brandstein, Function spaces related to hypo-Dirichlet algebras, Doctoral Thesis, Brown University, Providence, R.I., 1972.
- 2. A. Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431.
- 3. A. Browder and J. Wermer, Some algebras of functions on an arc, J. Math. Mech. 12 (1963), 119-130. MR 26 #1770.
- 4. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math. vol. 7, Interscience, New York, 1958. MR 22 #8302.

HARRY DIAMOND LABORATORIES, WASHINGTON, D.C. 20438