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GROUPS WITH  NORMAL SUBGROUPS POSSESSING
SUBNORMAL COMPLEMENTS

K.   H.   TOH

Abstract. J. Wiegold has characterized groups in which every

normal subgroup is a direct factor as the restricted direct products

of simple groups. In this paper, it is proved that for a group G to

have the structure above, it is sufficient that every normal subgroup

of G has a subnormal complement in G.

1. Introduction. A subgroup A of a group G is said to be comple-

mented in G if there is a subgroup B of G such that G=AB and Ar\B=\.

The subgroup B is called a complement of A in G. Adopting a notation of

C. Christensen [2], we shall call G an «D-group («5-group, nC-group) if

every normal subgroup of G has a normal complement (a subnormal

complement, some complement). It is clear that

[nD] s [nS] S [nC]

where [X] denotes the class of A'-groups. J. Wiegold [5] has characterized

«Z)-groups as the (restricted) direct products of simple groups. The much

wider class of «C-groups has been studied by C. Christensen ([2], [3]),

S. N. Cernikov [1], N. T.Dinerstein [4] and D. I. Zaicev [6]. Our purpose

is to show that the classes [nD] and [«5] are identical, i.e. we shall prove

the following

Theorem.   Every nS-group is an nD-group.

The proof employs Wiegold's result cited above and a theorem of

Cernikov [1, Theorem 13, Corollary 2] which states that a locally nil-

potent «C-group is a (restricted) direct product of cyclic groups of prime

orders.

2. Lemmas. In all that follows, by the direct product of a set of groups

we shall mean the restricted direct product. The symbol N<]G will denote
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the fact that TV is a normal subgroup of G. For any two elements a and b

of G, [a, b] will denote the element a~1b~1ab.

Lemma 1. Let G be an nS-group, A<]G and B a complement of A in G.

Then B is an nS-group.

Proof. Since G=AB and ,405=1, B~G/A. Let N be a normal

subgroup of G containing A and K a subnormal complement of N. Then

in the factor group G\A, KA/A is a subnormal complement of NjA. Thus,

GI A, and hence B, is an nS-group.

Lemma 2. Let G be a group, K a subnormal subgroup of G and M a

nonabelian minimal normal subgroup of K. Then M° (the normal closure

of M in G) is a minimal normal subgroup of G.

3. Proof of the theorem. Let G be an nS-group. Denote by A the

subgroup generated by the nonabelian minimal normal subgroups of G

and by B that generated by the abelian subnormal subgroups of G. Then

A<]G, and since conjugates of subnormal subgroups are subnormal,

we also have B<\G.

We shall prove that G=AB. Suppose, on the contrary, that G^AB.

Then, G possesses a subnormal subgroup C such that G=ABC, ABC\C= 1

and Cj£ 1. Let ceC.c^l, and let Nbe a normal subgroup of C maximal

with respect to the property that c $ N. Since, by Lemma 1, C is an nS-

group, there is a subnormal subgroup D of C such that C=ND and

NC\D=l, and it follows that D~C//V. Now by the choice of N, every

nontrivial normal subgroup of CjN contains the element cN. Hence

CjN, and therefore D, possesses a unique minimal normal subgroup.

Let the minimal normal subgroup of D be M. Then Mt¿ 1 and M is sub-

normal in G. If Mis abelian, we have MçB. On the other hand, if M is

nonabelian, then by Lemma 2, Ma is minimal normal in G, and so

M^MaçA. In either case, ABr\C^ 1, a contradiction. Hence G=AB.

Next we observe that A is a direct product of minimal normal subgroups

of G, and Ar\B<\G. It follows easily that A=Axx(Ar\B) where Ax is a

direct product of some minimal normal subgroups Mx (A e A) of G.

We write A1=J~[JeAMx. Hence G=AB=AXB, and since AxriB^Axn

(Ar\B)=l, we have

G = Ax X B = (il Mx) X B.
UeA /

Since a normal subgroup of a direct factor of G is normal in G, each

Mx is simple.
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Finally, the subgroup B is locally nilpotent (from its definition) and

is an «S-group, by Lemma 1. The result then follows from Cernikov's

theorem cited above.
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