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Abstract. Let w=/(z)=z-f-a2z2-f-' ■ ■ be regular and uni-

valent for |z|<l, and map |z|<l onto a region which is starlike

with respect to w=0. If r0 denotes the radius of convexity of w =

f(z), d*=m\n \f(z)\ for |z|=r„ and ¿=inf \ß\ for which f(z)*ß,

then it has been conjectured by A. Schild in 1953 that d*/d^.§.

It is shown here that this conjecture is false by giving two counter-

examples.

1. Introduction. Let S* be the class of univalent starlike functions/in

A={z:|z|<l} with/(0)=0. Let r0=r„(f) be the radius of convexity

of/ (see Hayman [2] for a definition). Put d* = min^=r¡¡ \f(z)\ and d =

inf [yS| for which f(z)^ß- Then in 1953, A. Schild [S] conjectured that

d*ld=%. Here equality holds for /(z)=z(l+z)-2, zeAT. Schild noted

that d*ld=r0=2—s/3 (see Hayman [2, p. 141]) and proved the con-

jecture for p symmetric functions, p=l. He also showed for a certain

class of circularly symmetric functions that d*jd—0.49. Lewandowski

and others ([3], [1]) proved the conjecture true for certain subclasses of

S*. Recently McCarty and Tepper [4] have shown that J*/rf_0.380 for

a function in S*.

In this paper we disprove the two-thirds conjecture by giving two

counterexamples. The first counterexample is given simply by

(1.1) fx(z) = z(l - z)-(l + z)*-\       zeK,0<0L<2,

where a is sufficiently near zero. As motivation for this example, we note

that if d is computed as a function of a, then (dlda)(d)-++ oo as <x—>-0

[see (2.2)]. For «=0.03 we obtain d*/d=0.656.
We also give an example of a circularly symmetric function in S* for

which d*/d<.0.645. Therefore the two-thirds conjecture is false even for

circularly symmetric functions.
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2. Example 1. For f„(z) defined by (1.1), w=fx(z) maps K onto the

entire w-plane minus two radial slits. The slits are symmetric about the

positive real axis and are separated by an angle of o.tt. From the mapping

properties offa(z) it is clear that d=\fa(z0)\ wheref'a(z0)=0. Since

(2.1) p(z) = zfa(z)/flz) = [1 + 2(a - 1)2 + z2](l - z2)'1,        z e K,

then/a(z0)=0 if z0 satisfies the equation l+2(a—l)z+z2=0. Hence

z0 = (l— a)±i'[l— (1 — a.)2]1'2. From symmetry we may choose either sign.

Thus

(2.2) log d(a) = - }a log 2a + J(a - 2)log(4 - 2a).

For fixed a, 0<a^l, let r^r^a) be the smallest positive root of the

equation

(2-3) 1 + rf"x(r)lf'a(r) = 0,       0 < r < 1.

Let dx=fx(rx). Then ri^r0 and consequently

(2.4) d* = dx,

since the minimum modulus of/, is increasing as a function of r, 0<r<l.

To obtain rx we solve (2.3). From (2.1) we have

,   ,  z/'¿(z)        , x  ,  zP'(z)
1 +-= p(z) +-

1 + (6a - 6)z + (4a2 - 8a + 10)z2 + (6a - 6)z3 + z4

(1 - z2)[l + 2(a - l)z + z2]

Thus rx is the first positive root of

F(r, a) = 1 + 6(a - V)r + 2(2a2 - 4a + 5)r2 + 6(a - l)r3 + r4
(2-5) = 0.

Substituting u=r+r_1 in (2.5) we obtain a quadratic equation in u. The

quadratic formula gives

(2.6)    ux = 3(1 - a) + [5(1 - a)2 - 4]1/2,        r, = \[ux - (u\ - 4)1/2].

We note that

(*) lim rx(ct) = 2 - V3    and    lim/a(z) = —-—-
a->0 ot->0 (1   +  Z)

uniformly on compact subsets of K.
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Using (2.2) and (*) it follows that limx^0 dx/d=l. Also (d¡da.)(dxld)
is a continuous function of a for 0 < a < 1, as is easily seen. From the mean

value theorem of differential calculus, we conclude that if

hn-(-)
->o da\d J

(2.7) lim— -   <0
a->o d<x\d/

then the two-thirds conjecture is false. Now

d        dx(tx.)      d d

«a        a(a)      dx da.

drxfx(rx) 1 + rx a
= t 77T + lo8 \-+ i lo§ ;— '

da fx(rx) 1 — rx 2 — a

thanks to (2.2). Since log[a/(2 — a)]->-— oo as <x->-0 and (*) is true, it

follows that we need only show \imx^,(drx(a.)¡daL)< + co to prove (2.7).

This can be shown directly from (2.6) or by the following argument. The

function F(r, a.) defined in (2.5) has continuous first partíais in a and r.

Moreover F(2—s/3>, 0)=0. From the implicit function theorem it follows

that if (dFldr)(2—y/3, 0)^0, then dr/doc is continuous in a neighborhood

of zero. Since (dF¡dr)(2-^j3, 0)= 12-8^/3^0, we conclude that (2.7)

is true and thereupon, for a near 0, a>0, that d*¡d=dxld<^.

A close approximation to the minimum of dx(a.)ld(a.) is given by

oc=0.03. For <x=0.03 we obtain using (1.1), (2.2) and (2.6) that d*jd=

0.656.

3. Example 2. In this section we give an example of a circularly

symmetric function for which d*/d<0.645. We use the functions ga,

— l<a<l, which have been shown by T. Suffridge in [6] to solve an

important extremal problem. Letga be defined by

F(z) = (zg'a(z))l(ga(z))

W = [(1 + 2az + z2)/(l - zff'\        zeK,-\<a<\.

Since (dld6)logga(eie) = iF(ei0) (any branch of \ogga(eie), 0<6<2n,

will do), it follows from the boundary behavior of zgá(z)¡ga(z) that ga

maps K onto the complex plane minus a set

{z: \z\ = d, 77 — ip _ arg z = tr + y>}        (0 < ip < 7r, | < d < 1).

A straightforward but long computation yields the identity

log —— =     [F(w) — l]w_1 dw
z        Jo

Q* - 2b log
<\ + 2az + zY* .   , 1 + z

+ b
'(I + 2az + z2V'

LI     (1-z)2     )(1 _ zf    ) x-z.

+ 2 log 2[(1 + 2az + z2)1/2 + 1 + z]

(i + by
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where a=2b2-l. From (3.1) and (3.2) we find that

(3.3) d = |g(-l)| = [(1 + bf*\i - b)1-»]-1

and

(3.4) y> = 77(1 - b).

Let rx=rx(a) he the first positive root of the equation

1 - rg"a(-r)/g'a(-r) = 0.

Then ri^r0 and hence d*—dx = \ga( — rx)\. We note that lima_i dx/d=%

and lima^i(d/da)(d)= oo. As in Example 1, these facts can be used to show

that the two-thirds conjecture is false. Here, however, we are interested

only in an explicit value of djd. To obtain this we first find that

l      zj^z) = (1 + 2az + z2f'2 + z(l + a)(l + z)

g'a(z)  '' (1 - z)(l + 2az + z2)

Hence rx is the first positive root of (i—2ar+r2y,2—r(l+a)(l—r)=0 or

equivalently of the sixth degree equation

1 - 6ar + (2 - 2a + Ua2)r2 + 2(1 - 4a)(l + a>3

+ (2 - 2a + lla2)r4 - 6ar5 + r6 = 0.

Using the substitution u=r+r~* we obtain a cubic equation in u. Solving

this cubic equation we get

(3.5) rx(a) = [ux - (u\ - 4)1/2]/2,

where

ux = x + 2a,       x = 2(A/3)V2 cos(0/3),

(3-6) 6 = cos"1 [(-3V3)(1 - a)/(l + a)]

with A = (1 + a)2.

Using (3.2), (3.3), (3.5) and (3.6) we can calculate dx/d for a given

value of a, 0.68=a=l. A close approximation to the minimum of dx/d

is 0.644 • • • given by a=0.89. From (3.4) it follows that y>&0.Cß7r for this

function.

The authors wish to thank Mr. David Blankenship for the use of his

H.P. 35 Calculator to obtain the approximations given in this paper.
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