CHEBYSHEV APPROXIMATION WITH A NULL SPACE

CHARLES B. DUNHAM

ABSTRACT. Chebyshev approximation involving continuous functions vanishing on a closed set V is considered. The approximating families studied have the betweenness property. Examples are given of such families. A necessary and sufficient condition for uniqueness of best approximations is obtained.

Let X be a compact space and V be a closed subset of X. Let C(V, X) be the space of continuous functions on X which vanish on V. For $g \in C(V, X)$ define

$$||g|| = \sup\{|g(x)| : x \in X\}.$$

Let \mathscr{G} be a subset of C(V, X). The Chebyshev problem is: Given $f \in C(V, X)$, find G^* in \mathscr{G} to minimize e(G) = ||f - G||. Such an element G^* is called a best approximation in \mathscr{G} to f on X.

At least two cases of such a problem arise naturally, namely approximation with functions vanishing at zero and approximation with functions decaying to zero at infinity.

A seemingly more general problem is to approximate with functions which agree with $v \in C(X)$ on a closed subset V of X. This problem, however, reduces to the previous problem if we subtract v from all functions.

We consider the best approximation problem and in particular the uniqueness problem if \mathscr{G} has the betweenness property [1].

DEFINITION. A family \mathscr{G} of continuous functions is said to have the betweenness property if for any two elements G_0 and G_1 , there exists a λ -set $\{H_{\lambda}\}$ of elements of \mathscr{G} such that $H_0 = G_0$, $H_1 = G_1$ and for all $x \in X$, $H_{\lambda}(x)$ is either a strictly monotonic continuous function of λ or a constant, $0 \le \lambda \le 1$.

EXAMPLE. Let \mathscr{G} be a linear subspace of C(V, X), then \mathscr{G} has the betweenness property, for a λ -set is given by $H_{\lambda} = \lambda G_1 + (1 - \lambda)G_0$.

EXAMPLE. Let P be a linear subspace of C(V, X) and Q a linear subspace of C(X) then $\mathcal{G} = \{p/q : p \in P, q \in Q, q > 0\}$ is in C(V, X) and has the betweenness property [1, 152].

Received by the editors January 22, 1973.

AMS (MOS) subject classifications (1970). Primary 41A50.

Key words and phrases. Chebyshev approximation, betweenness property, uniqueness.

LEMMA. Let σ be a continuous strictly monotonic mapping of the real line into the real line such that $\sigma(0)=0$.

Let $\mathcal{G} \in C(V, X)$ have the betweenness property. Then

$$\phi(\mathscr{G}) = \{\sigma(G) : G \in \mathscr{G}\} \subset C(V, X)$$

and has the betweenness property.

PROOF. Let $\{H_{\lambda}\}$ be a λ -set for G_0 and G_1 . Then $\{\sigma(H_{\lambda})\}$ is a λ -set for $\sigma(G_0)$ and $\sigma(G_1)$.

LEMMA. Let $\mathcal{G} \subset C(W, X)$ have the betweenness property and $s \in C(V, X)$. Then the set $s\mathcal{G}$ (consisting of products of s and elements of \mathcal{G}) is in $C(W \cup V, X)$ and has the betweenness property.

The previous theory obtained for betweenness [1] gives a characterization of best approximations and an error-determining set on which best approximations agree. We must, however, develop a new theory for uniqueness.

DEFINITION. $\mathscr{G} \subset C(V, X)$ has zero-sign compatibility with null space V if for any two distinct elements G and H, any closed subset Z of the zeros of G-H which contains no points of V and for any $s \in C(V, X)$ taking values -1 or +1 on Z, there exists $F \in \mathscr{G}$ such that

(*)
$$\operatorname{sgn}(F(X) - G(x)) = s(x), \quad x \in \mathbb{Z}.$$

THEOREM. Let $\mathcal{G} \subset C(V, X)$ have the betweenness property. A necessary and sufficient condition that for every $f \in C(V, X)$ a best approximation is unique is that \mathcal{G} have zero-sign compatibility with null space V.

The proof is the same as the proof of the corresponding result in [1]. The case where $\mathscr G$ is a finite-dimensional linear family is of particular interest. It can be shown using the above theorem that a necessary and sufficient condition for uniqueness is that $\mathscr G$ be a Haar subspace on $X \sim V$. Independent proofs of necessity and sufficiency are given in [3], [2], respectively.

REFERENCES

- 1. C. B. Dunham, Chebyshev approximation by families with the betweeness property, Trans. Amer. Math. Soc. 136 (1969), 151-157. MR 38 #4880.
 - 2. ——, Linear Chebyshev approximation, Aequationes Math. (to appear).
- 3. ——, Families satisfying the Haar condition, J. Approximation Theory (to appear).

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA