
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 41, Number 2, December 1973

FINITELY  GENERATED  STEADY  ^-SEMIGROUPS

TAKAYUKI  TAMURA

Abstract. In this paper the author proves that S is a finitely

generated steady Si-semigroup if and only if S is isomorphic to the

direct product of a finite abelian group and the infinite cyclic semi-

group ; and also studies the homomorphisms of a finitely generated

steady 9Z-semigroup into another.

1. Introduction. By an 31-semigroup we mean a commutative archi-

medean cancellative semigroup without idempotent. Following Petrich

[9] an 9i-semigroup S is called steady if S cannot be embedded into

another 51-semigroup as a proper ideal. In this note the author determines

the structure of finitely generated steady St-semigroups. Such a semigroup

is isomorphic to the direct product of a finite abelian group and the

infinite cyclic semigroup.

2. Preliminaries. Let P denote the set of all positive integers and P°

the set of all nonnegative integers. The structure of Jl-semigroups was

given by the author:

Theorem 1 ([3], [11]). Let G be an abelian group and I:Gx G-+P0 be a

function satisfying

(1.1) /(a, ß)=I(ß, a.) for all a.,ßeG.

(1.2) /(a, ß)+I(*ß, y)=/(a, ßy)+I(ß, y) for all a, /?, y e G.

(1.3) I(s, a) = l (e being the identity of G) for all a e G.
(1.4) For each cue G there is m eP such that /(a, am)>0.

Let S be the set of all ordered pairs {x, <x},x eP°, a eG. Define an operation

in S by
{x,<x}{y,ß} = {x+y + I(z,ß),xß}.

Then S is an ^.-semigroup, denoted by S=(G; T). Every ^.-semigroup can be

obtained in this manner.

Let D be an 5R-semigroup and let a e D. Define a relation p on D by

x p y if and only if amx=any for some m, ne P. Then p is a congruence

and G=D/p is an abelian group and there exists I:GxG->-P0 such that
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-D=(G; /). G is called the structure group of D with respect to a. Thus G

and /depend on an element a; so we denote these by Ga and /„ respectively

if it is necessary to specify a. An 9î-semigroup S is called power joined

if for every a, b e S there are m, neP such that am=bn.

Proposition 2. (2.1) ([1], [2]). ,4« 3l-semigroup S=(G;I) is power

joined if and only if G is periodic.

(2.2) ([1], [2], [6]). S=(G; I) is finitely generated if and only if G is finite.

Let S=(G; I) be a power joined 3î-semigroup. Let R denote the set of

positive rational numbers. Define a function <p : G--R by

(2.3) ?>(a) = -¿/(«,ai)
«¿tí

where « is the order of an element a of G.

Proposition 3 [10],    The function <p satisfies the following conditions:

(3.1) ç»(e)=l, e the identity of G.

(3.2) <p(<x) + cp(ß) — cp(u.ß) is a nonnegative integer, and

(3.3) I(x,ß) = <p(a.) + <p(ß)-cp(oLß).

If S is finitely generated, equivalently, G is finite, then

1  -o
(3.4) 95(a) = — z ^(a> Í)    where \G\ is the order of G.

\G\teG

There is a one-to-one correspondence between / and 9? for a fixed G if

G is periodic. Thus S is determined by G and 9?, and it is denoted by

S=(G; <p). The notation "S=(G; I)=(G; <p)" means that 9? corresponds

to /. Let a be an element of S. The function <p corresponding to /„ is

denoted by <pa.

If G is finite, we can choose an element a of S such that

(3.5) \Ga\ = 2 '.(«, 0   for all a e Ga.
SEGa

(See [7].) Then (Ga ; I A or (Ga ; cpA is called a canonical representation of S.

Speaking of cp, (G; y) is canonical if and only if

(3.6) 93(a) = 1    for all a. eG.

Let S=(G; T) and A(S) be the semigroup of all translations of S. Then

A(S) is a commutative cancellative semigroup. Let T(S) be the subsemi-

group of A(S) consisting of all inner translations of S, and Y(S) the

archimedean component of A(S) containing T(S). Note that S^T(S),

that Y(S) is also an SR-semigroup, and that T(S)={A e A(S):Xn e T(S)

for some n e/*}. Each element of A(S) is determined by a pair (m, a) e

P°xG where if w=0, we further require that /(a, £)>0 f°r all I e G.
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The translation corresponding to (m, a) is denoted by A(m a), and it takes

an element {x, f} of S to the element {x+m+I(<x, £)— 1, a|} in S. The

multiplication in A(S) is given by

Then we can see that V(S)={klm_<x) :m>0, a e G} and that x¥(S)=TiS)uA

where yl={A(0,a) :/(a, £)>0 for all f e G and /(a, a'n)> 1 for some m e P}.

See [4], [5] with respect to the translations of ^-semigroups.

Theorem 4 (Petrich [9]). The following conditions on an Wi-semigroup

S are equivalent :

(4.1) For any a,beS,aS^ bS and a2S £ b2S imply a e bS.

(4.2) T(5) = r(5).
(4.3) S cannot be embedded into an ^l-semigroup as a proper ideal.

If an 9l-semigroup S satisfies one of (4.1), (4.2) and (4.3), S is called

steady.

The condition (4.2) is equivalent to A = 0. Hence we get the following

lemma.

Lemma 5. An 'il-semigroup S=(G; I) is steady if and only if"/(a, |)>0

for all ^eG implies /(a, am)= 1 for all me P.

3. Main result. In- this paper we treat only finitely generated ^-semi-

groups.

Theorem 6. Let S=(G;1) be a finitely generated 9Î-semigroup. The

following are equivalent :

(6.1) /(a, S)>0for all Ç e G implies /(a, a™) = 1 for all me P.
(6.2) /(a, £)>0/or all ÇeG implies <p(«.) = l.

(6.3) <p(<x)=l for alloc eG.

(6.4) /(a, £)>0for all | e G implies /(a, Ç) = lfor all f e G.

Proof.    (6.1)=>(6.2): Obvious by (2.3).

(6.2)=>(6.3): Let <p(ß) be the maximum of {97(f):feG}. Suppose

I(ß, £) = <p(ß) + fp(g)-ip(ß£)=0 for some g e G. Then <p(ß)<<p(ßg). This

is in contradiction to maximality of q>(ß). Accordingly I(ß, f)>0 for all

f e G. By (6.2), ç»(/S)=l, hence ç»(a)^l for all aeG.
(6.3)=>(6.4): Assume /(a, f)>0 for all £ e G. By (6.3) we have 0<

/(a, i) = ç>(a) + ç>(£)-ç>(af)^2-9'(«£)<2. Therefore /(a, f) = l.

(6.4)=>(6.1): Obvious.

As far as finitely generated ?l-semigroups are concerned, each of (6.1)

through (6.4) is a necessary and sufficient condition for S=(G; I) to be

steady because of Lemma 5. Although the functions / and cp depend on the

choice of standard elements, the condition in Lemma 5, (6.1), (6.2), (6.3)
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and (6.4) are the properties of S itself, independent of standard elements.

The following theorem more explicitly describes the structure of 5". Let

PxG denote the direct product of the additive semigroup P and G. An

element of PxG is denoted by (z, a), z eP, a e G.

Theorem 7. A finitely generated Wl-semigroup S is steady if and only if

S is isomorphic to the direct product of the positive integer semigroup P and

a finite abe lian group.

Proof. Assume that S is steady. Let S=(G; I) = (G; <p) be a canonical

representation of S. By (3.6) and (6.3), ç»(a) = l for all a e G. Then I(<x.,ß) =

<p(u.)+<p(ß) — q>(oiß) = l for all a, ß e G. With respect to the representation

of S=(G;I),
{x,*.}{y,ß} = {x+y+l,*ß}.

Define a map f:S--PxG by {x, a.}h->(x+l, a). We can easily see that/is

an isomorphism.

Conversely let S=P x G where G is a finite abelian group. Let a=(1, e),

s being the identity of G. Then all elements prime to a have the form

(1, a), a. eG.

(l,<x)(l,ß) = (l,e)(l,xß).

From this it follows that the structure group Ga is isomorphic to G and

/a(a, ß) = l for all a, ß e Ga. By Theorem 6 and Lemma 5 we conclude

that S is steady.

Remark. McAlister and O'Carroll characterized PxG in the more

general case, that is, they proved in [8] that a finitely generated cancellative

semigroup S without idempotent is isomorphic to P X G if and only if

S2=Sa for all a e S\S2.

Remark. The equivalence of (6.1), (6.2) and (6.4) is valid even if

S=(G; I) is power joined.

4. Homomorphisms. Let S=PxG where G is a finite abelian group.

It is easy to see that the structure group G(ma) of S with respect to an

element (m, a) of 5e has order m ■ \G\ and Ga¡a) has the smallest order of

the structure groups of S. Furthermore G(1 a)^G(lE)^G. Let G and H

be finite abelian groups. It follows that P x G^P xH'xf and only if G^H.

More generally we consider homomorphisms of one steady 31-semigroup

into another. Let S=PxG, T=PxH. Let (m, a) and [x, f] denote

elements of S and T respectively. Assume that/is a homomorphism of S

into T. For each a e G, let/(l, a)=[/»(a), q(«.)] where /»:G->-P, q:G-*H.

Then

f(m, a) =/((l, e)"-i(l, a)) = (f(l, e))-*/(l, a)

= [(m - l)p(e) +p(oi),q(er-1q(k)]
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where e is the identity of G. Likewise

/(if, ß) = [(n - l)p(e) + p(ß), q(er~iq(ß)],   and

f((m, x)(n, ß)) =[(m + n- l)p(e) + p(«.ß),q(eT+^q(«.ß)l

From/((/m, a)(n, ß))=f(m, a)/(n, /S), we get

/»(a) + /,(/?) = /»(a/5) + /,(£),       ?(«)?(^) = q(aß)q(e)   for all a, ß e G.

Let r(a)=/»(a)—/»(e) and 5,(a)=^(a)^(fi)_1. Then we have r(cx)+r(ß) =

r(onß), s(a.)s(ß)=s(xß), that is, r is a homomorphism of G into Z where Z

is the group of integers under addition and j is a homomorphism of G

into H. However, since G is finite, r(a)=0 for all a e G, hence/»(a)=/»(e)

for all a e G. Let t=p(e), a=q(e). We get f(m, a)= [tm, ams(<x)].

Conversely let í be a homomorphism of G into H, a a fixed element of

H and í a fixed positive integer. Define/: S^>T by

(8) /(w, a) = [tm, ams(x)].

Then it is easy to show that / is a homomorphism. Thus all homo-

morphisms of S into Tare determined by t eP, a e H, and s e Hom(G, H).

Moreover we see from (8) that/ is one-to-one if and only if s is one-to-one ;

/is onto if and only if /= 1 and s is onto. Let Horn^, T) denote the semi-

group of all homomorphisms of S into T in the usual sense. Clearly

Hom(S', T)¿¿0. Consequently we have the following theorem.

Theorem 9. (9.1) Hom(P xG,Px H)^P xHx Hom(G, H) hence it is

a finitely generated steady '31-semigroup.

(9.2) PxH is a homomorphic image ofPxG if and only if G is homo-

morphic onto H.

(9.3) P X G is isomorphic into (onto) PxH if and only if G is isomorphic

into (onto) H.

Let |G|<oo and S=(G;T). According to [6], S is isomorphic to a

subdirect product of a positive integer additive semigroup and G, hence

S can be embedded into P x G in the natural way. Consider the category of

the embeddings of S into finitely generated 9c-semigroups. Even if S=

(G;I) is canonical, the embedding S->-PxG need not be a universal

object. (See the example below.) We state the following theorem without

detailed proof.

Theorem 10. Let S=(G; I)=(G; <p), |G|<oo, and let G0={aeG:

93(a) e P}. Then G0 is a subgroup of G and S is isomorphic to a subsemigroup

ofPxG0 and the embedding S—>P X G0 is a universal repelling object in the

category of the embeddings of S into finitely generated steady ^-semigroups.
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Z X G0 is isomorphic to the quotient group of S, and G0 is isomorphic

to the torsion subgroup of ZxG0. It is easy to see that S-+PxG0 is a

universal object, but G0 need not be a structure group of S. (See the

example below.) Related to Theorem 10, see [8] and [12].

Example.   Let G be the Klein four group: a.2=ß2=e. Define q> by

<p(e) = 9?(a) = 1,        <p(ß) = f,        <p(a/?) = f.

Let S=(G; q>). S has two canonical representations with respect to {0, e}

and {0, a}. Then G{0e)^G but G{0,x) is a cyclic group of order 4, hence

PxG£pxG{0x). Since \G{0,ß)\=6, PxG cannot be embedded into

PxG{0ß) but S can be embedded into PxG{0 ß). G0 consists of e and a,

and G0 is not a structure group of S.
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