FINITELY GENERATED STEADY 92-SEMIGROUPS

TAKAYUKI TAMURA

ABSTRACT. In this paper the author proves that S is a finitely generated steady \Re -semigroup if and only if S is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup; and also studies the homomorphisms of a finitely generated steady \Re -semigroup into another.

- 1. Introduction. By an \mathfrak{N} -semigroup we mean a commutative archimedean cancellative semigroup without idempotent. Following Petrich [9] an \mathfrak{N} -semigroup S is called steady if S cannot be embedded into another \mathfrak{N} -semigroup as a proper ideal. In this note the author determines the structure of finitely generated steady \mathfrak{N} -semigroups. Such a semigroup is isomorphic to the direct product of a finite abelian group and the infinite cyclic semigroup.
- 2. **Preliminaries.** Let P denote the set of all positive integers and P^0 the set of all nonnegative integers. The structure of \mathfrak{N} -semigroups was given by the author:

THEOREM 1 ([3], [11]). Let G be an abelian group and $I: G \times G \rightarrow P^0$ be a function satisfying

- (1.1) $I(\alpha, \beta) = I(\beta, \alpha)$ for all $\alpha, \beta \in G$.
- (1.2) $I(\alpha, \beta) + I(\alpha\beta, \gamma) = I(\alpha, \beta\gamma) + I(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in G$.
- (1.3) $I(\varepsilon, \alpha) = 1$ (ε being the identity of G) for all $\alpha \in G$.
- (1.4) For each $\alpha \in G$ there is $m \in P$ such that $I(\alpha, \alpha^m) > 0$.

Let S be the set of all ordered pairs $\{x, \alpha\}, x \in P^0, \alpha \in G$. Define an operation in S by

$$\{x, \alpha\}\{y, \beta\} = \{x + y + I(\alpha, \beta), \alpha\beta\}.$$

Then S is an \mathfrak{N} -semigroup, denoted by S=(G; I). Every \mathfrak{N} -semigroup can be obtained in this manner.

Let *D* be an \mathfrak{R} -semigroup and let $a \in D$. Define a relation ρ on *D* by $x \rho y$ if and only if $a^m x = a^n y$ for some $m, n \in P$. Then ρ is a congruence and $G = D/\rho$ is an abelian group and there exists $I: G \times G \rightarrow P^0$ such that

Received by the editors February 8, 1973.

AMS (MOS) subject classifications (1970). Primary 20M10.

Key words and phrases. (Finitely generated) N-semigroups, power joined N-semigroups, steady N-semigroups, structure groups, prime elements to a.

 $D \cong (G; I)$. G is called the structure group of D with respect to a. Thus G and I depend on an element a; so we denote these by G_a and I_a respectively if it is necessary to specify a. An \mathfrak{R} -semigroup S is called power joined if for every $a, b \in S$ there are $m, n \in P$ such that $a^m = b^n$.

PROPOSITION 2. (2.1) ([1], [2]). An \mathfrak{N} -semigroup S=(G;I) is power joined if and only if G is periodic.

(2.2) ([1], [2], [6]). S=(G; I) is finitely generated if and only if G is finite.

Let S=(G; I) be a power joined \Re -semigroup. Let R denote the set of positive rational numbers. Define a function $\varphi: G \to R$ by

(2.3)
$$\varphi(\alpha) = \frac{1}{n} \sum_{i=1}^{n} I(\alpha, \alpha^{i})$$

where n is the order of an element α of G.

PROPOSITION 3 [10]. The function φ satisfies the following conditions:

- (3.1) $\varphi(\varepsilon)=1$, ε the identity of G.
- (3.2) $\varphi(\alpha) + \varphi(\beta) \varphi(\alpha\beta)$ is a nonnegative integer, and
- (3.3) $I(\alpha, \beta) = \varphi(\alpha) + \varphi(\beta) \varphi(\alpha\beta)$.

If S is finitely generated, equivalently, G is finite, then

(3.4)
$$\varphi(\alpha) = \frac{1}{|G|} \sum_{\xi \in G} I(\alpha, \xi) \quad \text{where } |G| \text{ is the order of } G.$$

There is a one-to-one correspondence between I and φ for a fixed G if G is periodic. Thus S is determined by G and φ , and it is denoted by $S=(G; \varphi)$. The notation " $S=(G; I)=(G; \varphi)$ " means that φ corresponds to I. Let a be an element of S. The function φ corresponding to I_a is denoted by φ_a .

If G is finite, we can choose an element a of S such that

(3.5)
$$|G_a| \leq \sum_{\xi \in G_a} I_a(\alpha, \xi) \text{ for all } \alpha \in G_a.$$

(See [7].) Then $(G_a; I_a)$ or $(G_a; \varphi_a)$ is called a *canonical* representation of S. Speaking of φ , $(G; \varphi)$ is canonical if and only if

$$\varphi(\alpha) \ge 1 \quad \text{for all } \alpha \in G.$$

Let S=(G;I) and $\Lambda(S)$ be the semigroup of all translations of S. Then $\Lambda(S)$ is a commutative cancellative semigroup. Let $\Gamma(S)$ be the subsemigroup of $\Lambda(S)$ consisting of all inner translations of S, and $\Psi(S)$ the archimedean component of $\Lambda(S)$ containing $\Gamma(S)$. Note that $S \cong \Gamma(S)$, that $\Psi(S)$ is also an \Re -semigroup, and that $\Psi(S) = \{\lambda \in \Lambda(S) : \lambda^n \in \Gamma(S) \text{ for some } n \in P\}$. Each element of $\Lambda(S)$ is determined by a pair $(m, \alpha) \in P^0 \times G$ where if m=0, we further require that $I(\alpha, \xi) > 0$ for all $\xi \in G$.

The translation corresponding to (m, α) is denoted by $\lambda_{(m,\alpha)}$, and it takes an element $\{x, \xi\}$ of S to the element $\{x+m+I(\alpha, \xi)-1, \alpha\xi\}$ in S. The multiplication in $\Lambda(S)$ is given by

$$\lambda_{(m,\alpha)} \cdot \lambda_{(n,\beta)} = \lambda_{(m+n+I(\alpha,\beta)-1,\alpha\beta)}$$
.

Then we can see that $\Gamma(S) = \{\lambda_{(m,\alpha)} : m > 0, \alpha \in G\}$ and that $\Psi(S) = \Gamma(S) \cup A$ where $A = \{\lambda_{(0,\alpha)} : I(\alpha, \xi) > 0 \text{ for all } \xi \in G \text{ and } I(\alpha, \alpha^m) > 1 \text{ for some } m \in P\}$. See [4], [5] with respect to the translations of \Re -semigroups.

THEOREM 4 (PETRICH [9]). The following conditions on an \mathfrak{R} -semigroup S are equivalent:

- (4.1) For any $a, b \in S$, $aS \subseteq bS$ and $a^2S \subseteq b^2S$ imply $a \in bS$.
- (4.2) $\Psi(S) = \Gamma(S)$.
- (4.3) S cannot be embedded into an N-semigroup as a proper ideal.

If an \Re -semigroup S satisfies one of (4.1), (4.2) and (4.3), S is called steady.

The condition (4.2) is equivalent to $A = \emptyset$. Hence we get the following lemma.

LEMMA 5. An \mathfrak{R} -semigroup S=(G;I) is steady if and only if $I(\alpha, \xi)>0$ for all $\xi \in G$ implies $I(\alpha, \alpha^m)=1$ for all $m \in P$.

3. Main result. In this paper we treat only finitely generated \mathfrak{N} -semigroups.

THEOREM 6. Let S=(G; I) be a finitely generated \Re -semigroup. The following are equivalent:

- (6.1) $I(\alpha, \xi) > 0$ for all $\xi \in G$ implies $I(\alpha, \alpha^m) = 1$ for all $m \in P$.
- (6.2) $I(\alpha, \xi) > 0$ for all $\xi \in G$ implies $\varphi(\alpha) = 1$.
- (6.3) $\varphi(\alpha) \leq 1$ for all $\alpha \in G$.
- (6.4) $I(\alpha, \xi) > 0$ for all $\xi \in G$ implies $I(\alpha, \xi) = 1$ for all $\xi \in G$.

PROOF. $(6.1) \Rightarrow (6.2)$: Obvious by (2.3).

 $(6.2)\Rightarrow (6.3)$: Let $\varphi(\beta)$ be the maximum of $\{\varphi(\xi): \xi \in G\}$. Suppose $I(\beta, \xi) = \varphi(\beta) + \varphi(\xi) - \varphi(\beta\xi) = 0$ for some $\xi \in G$. Then $\varphi(\beta) < \varphi(\beta\xi)$. This is in contradiction to maximality of $\varphi(\beta)$. Accordingly $I(\beta, \xi) > 0$ for all $\xi \in G$. By (6.2), $\varphi(\beta) = 1$, hence $\varphi(\alpha) \leq 1$ for all $\alpha \in G$.

 $(6.3) \Rightarrow (6.4)$: Assume $I(\alpha, \xi) > 0$ for all $\xi \in G$. By (6.3) we have $0 < I(\alpha, \xi) = \varphi(\alpha) + \varphi(\xi) - \varphi(\alpha \xi) \le 2 - \varphi(\alpha \xi) < 2$. Therefore $I(\alpha, \xi) = 1$.

 $(6.4) \Rightarrow (6.1)$: Obvious.

As far as finitely generated \mathfrak{R} -semigroups are concerned, each of (6.1) through (6.4) is a necessary and sufficient condition for S=(G; I) to be steady because of Lemma 5. Although the functions I and φ depend on the choice of standard elements, the condition in Lemma 5, (6.1), (6.2), (6.3)

and (6.4) are the properties of S itself, independent of standard elements. The following theorem more explicitly describes the structure of S. Let $P \times G$ denote the direct product of the additive semigroup P and G. An element of $P \times G$ is denoted by $(z, \alpha), z \in P, \alpha \in G$.

THEOREM 7. A finitely generated \mathfrak{N} -semigroup S is steady if and only if S is isomorphic to the direct product of the positive integer semigroup P and a finite abelian group.

PROOF. Assume that S is steady. Let $S = (G; I) = (G; \varphi)$ be a canonical representation of S. By (3.6) and (6.3), $\varphi(\alpha) = 1$ for all $\alpha \in G$. Then $I(\alpha, \beta) = \varphi(\alpha) + \varphi(\beta) - \varphi(\alpha\beta) = 1$ for all $\alpha, \beta \in G$. With respect to the representation of S = (G; I),

$${x, \alpha}{y, \beta} = {x + y + 1, \alpha\beta}.$$

Define a map $f: S \rightarrow P \times G$ by $\{x, \alpha\} \mapsto (x+1, \alpha)$. We can easily see that f is an isomorphism.

Conversely let $S=P\times G$ where G is a finite abelian group. Let $a=(1, \varepsilon)$, ε being the identity of G. Then all elements prime to a have the form $(1, \alpha)$, $\alpha \in G$.

$$(1, \alpha)(1, \beta) = (1, \varepsilon)(1, \alpha\beta).$$

From this it follows that the structure group G_a is isomorphic to G and $I_a(\alpha, \beta) = 1$ for all $\alpha, \beta \in G_a$. By Theorem 6 and Lemma 5 we conclude that S is steady.

REMARK. McAlister and O'Carroll characterized $P \times G$ in the more general case, that is, they proved in [8] that a finitely generated cancellative semigroup S without idempotent is isomorphic to $P \times G$ if and only if $S^2 = Sa$ for all $a \in S \setminus S^2$.

REMARK. The equivalence of (6.1), (6.2) and (6.4) is valid even if S=(G;I) is power joined.

4. Homomorphisms. Let $S=P\times G$ where G is a finite abelian group. It is easy to see that the structure group $G_{(m,\alpha)}$ of S with respect to an element (m,α) of S has order $m\cdot |G|$ and $G_{(1,\alpha)}$ has the smallest order of the structure groups of S. Furthermore $G_{(1,\alpha)} \cong G_{(1,\epsilon)} \cong G$. Let G and H be finite abelian groups. It follows that $P\times G\cong P\times H$ if and only if $G\cong H$.

More generally we consider homomorphisms of one steady \mathfrak{R} -semigroup into another. Let $S=P\times G$, $T=P\times H$. Let (m,α) and $[x,\xi]$ denote elements of S and T respectively. Assume that f is a homomorphism of S into T. For each $\alpha\in G$, let $f(1,\alpha)=[p(\alpha),q(\alpha)]$ where $p:G\to P$, $q:G\to H$. Then

$$f(m, \alpha) = f((1, \varepsilon)^{m-1}(1, \alpha)) = (f(1, \varepsilon))^{m-1}f(1, \alpha)$$
$$= [(m-1)p(\varepsilon) + p(\alpha), q(\varepsilon)^{m-1}q(\alpha)]$$

where ε is the identity of G. Likewise

$$f(n,\beta) = [(n-1)p(\varepsilon) + p(\beta), q(\varepsilon)^{n-1}q(\beta)], \text{ and}$$

$$f((m,\alpha)(n,\beta)) = [(m+n-1)p(\varepsilon) + p(\alpha\beta), q(\varepsilon)^{m+n-1}q(\alpha\beta)].$$

From $f((m, \alpha)(n, \beta)) = f(m, \alpha) f(n, \beta)$, we get

$$p(\alpha) + p(\beta) = p(\alpha\beta) + p(\varepsilon), \quad q(\alpha)q(\beta) = q(\alpha\beta)q(\varepsilon) \text{ for all } \alpha, \beta \in G.$$

Let $r(\alpha)=p(\alpha)-p(\varepsilon)$ and $s(\alpha)=q(\alpha)q(\varepsilon)^{-1}$. Then we have $r(\alpha)+r(\beta)=r(\alpha\beta)$, $s(\alpha)s(\beta)=s(\alpha\beta)$, that is, r is a homomorphism of G into Z where Z is the group of integers under addition and s is a homomorphism of G into H. However, since G is finite, $r(\alpha)=0$ for all $\alpha \in G$, hence $p(\alpha)=p(\varepsilon)$ for all $\alpha \in G$. Let $t=p(\varepsilon)$, $\sigma=q(\varepsilon)$. We get $f(m,\alpha)=[tm,\sigma^m s(\alpha)]$.

Conversely let s be a homomorphism of G into H, σ a fixed element of H and t a fixed positive integer. Define $f: S \rightarrow T$ by

(8)
$$f(m, \alpha) = [tm, \sigma^m s(\alpha)].$$

Then it is easy to show that f is a homomorphism. Thus all homomorphisms of S into T are determined by $t \in P$, $\sigma \in H$, and $s \in \text{Hom}(G, H)$. Moreover we see from (8) that f is one-to-one if and only if s is one-to-one; f is onto if and only if t=1 and s is onto. Let Hom(S, T) denote the semigroup of all homomorphisms of S into T in the usual sense. Clearly $\text{Hom}(S, T) \neq \emptyset$. Consequently we have the following theorem.

THEOREM 9. (9.1) $\operatorname{Hom}(P \times G, P \times H) \cong P \times H \times \operatorname{Hom}(G, H)$ hence it is a finitely generated steady \mathfrak{N} -semigroup.

- (9.2) $P \times H$ is a homomorphic image of $P \times G$ if and only if G is homomorphic onto H.
- (9.3) $P \times G$ is isomorphic into (onto) $P \times H$ if and only if G is isomorphic into (onto) H.

Let $|G| < \infty$ and S = (G; I). According to [6], S is isomorphic to a subdirect product of a positive integer additive semigroup and G, hence S can be embedded into $P \times G$ in the natural way. Consider the category of the embeddings of S into finitely generated \mathfrak{R} -semigroups. Even if S = (G; I) is canonical, the embedding $S \rightarrow P \times G$ need not be a universal object. (See the example below.) We state the following theorem without detailed proof.

THEOREM 10. Let $S = (G; I) = (G; \varphi)$, $|G| < \infty$, and let $G_0 = \{\alpha \in G: \varphi(\alpha) \in P\}$. Then G_0 is a subgroup of G and G is isomorphic to a subsemigroup of G and the embedding $G \to P \times G_0$ is a universal repelling object in the category of the embeddings of G into finitely generated steady G-semigroups.

 $Z \times G_0$ is isomorphic to the quotient group of S, and G_0 is isomorphic to the torsion subgroup of $Z \times G_0$. It is easy to see that $S \rightarrow P \times G_0$ is a universal object, but G_0 need not be a structure group of S. (See the example below.) Related to Theorem 10, see [8] and [12].

EXAMPLE. Let G be the Klein four group: $\alpha^2 = \beta^2 = \varepsilon$. Define φ by

$$\varphi(\varepsilon) = \varphi(\alpha) = 1, \qquad \varphi(\beta) = \frac{3}{2}, \qquad \varphi(\alpha\beta) = \frac{5}{2}.$$

Let $S=(G; \varphi)$. S has two canonical representations with respect to $\{0, \varepsilon\}$ and $\{0, \alpha\}$. Then $G_{\{0,\varepsilon\}} \cong G$ but $G_{\{0,\alpha\}}$ is a cyclic group of order 4, hence $P \times G \not\cong P \times G_{\{0,\alpha\}}$. Since $|G_{\{0,\beta\}}| = 6$, $P \times G$ cannot be embedded into $P \times G_{\{0,\beta\}}$ but S can be embedded into $P \times G_{\{0,\beta\}}$. G_0 consists of ε and α , and G_0 is not a structure group of S.

REFERENCES

- 1. J. L. Chrislock, *The structure of archimedean semigroups*, Dissertation, University of California, Davis, Calif., 1966.
 - 2. ——, On medial semigroups, J. Algebra 12 (1969), 1-9. MR 38 #5966.
- 3. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 24 #A2627.
- 4. R. P. Dickinson, Right zero unions, Dissertation, University of California, Davis, Calif., 1970.
- 5. R. E. Hall, The structure of certain commutative separative and commutative cancellative semigroups, Dissertation, Pennsylvania State University, Middletown, Pa., 1969.
- 6. J. C. Higgins, Representing N-semigroups, Bull. Austral. Math. Soc. 1 (1969), 115-125. MR 40 #1504.
- 7. ——, A faithful canonical representation for finitely generated N-semigroups, Czechoslovak Math. J. 19 (1969), 375-379. MR 40 #1503.
- 8. D. B. McAlister and L. O'Carroll, Finitely generated commutative semigroups, Glasgow Math. J. 11 (1970), 134-151. MR 42 #4660.
- 9. M. Petrich, Normal bands of commutative cancellative semigroups, Duke Math. J. 40 (1973), 17-32.
- 10. M. Sasaki and T. Tamura, Positive rational semigroups and commutative power joined cancellative semigroups without idempotent, Czechoslovak Math. J. 21 (1971), 567-576. MR 45 #2062.
- 11. T. Tamura, Commutative nonpotent archimedean semigroups with cancellation law. I, J. Gakugei Tokushima Univ. 8 (1957), 5-11. MR 20 #3224.
- 12. J. C. Higgins and T. Tamura, Finitely generated N-semigroups and quotient groups, Proc. Japan Acad. 49 (1973), 323-327.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616