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AN INVERSE FUNCTION THEOREM
FOR FREE  GROUPS

JOAN S.  BIRMAN1

Abstract. Let F„ be a free group of rank n with free basis

*»» " • i xn. Let tyi, • ■ ■, yk} be a set of k rg/i elements of Fn, where

each y i is represented by a word Y¡(xu • ■ ■, x„) in the generators

x¡. Let SyJdXj denote the free derivative of yt with respect to x¡,

and let Jtn= WdyJdXjW denote the k xn Jacobian matrix. Theorem.

If k=n, the set {ylt ■ ■ ■ ,y„} generates Fn if and only ifJ„n has a

right inverse. Ifk<n, the set {yu ■ ■ •, yk) may be extended to a set

of elements which generate Fn only ifJkn has a right inverse. Several

applications are given.

Let Z denote the ring of rational integers, and let ZFn denote the

integral group ring of a free group F„ which has the free basis x1, • • •, xn.

Let dldx¡:ZFn->-ZFn denote they'th free partial derivative, in the sense

of R. H. Fox [3]. The mapping d¡dx5 is defined as follows: If w e Fn is

represented by the word xeß\ • • ' x%, where Bf=±l and /j.~1, • • • ,n,

then dw/dxj eZFn is defined by:

where ô means the Kronecker symbol. More generally, if w=2'=i ciwi>

Cf eZ, w(eFn, we define

(2) a.,-5c*¡V
It is easy to show that this definition is independent of the choice represen-

tatives of the elements wt e Fn.

There are known analogues between the "free" calculus of polynomials

in the noncommuting indeterminates xu ■ • • , xn and the "ordinary"

calculus of polynomials in commuting indeterminates, such as the

existence of Taylor series [3]. However, it is worth noting that if a is the
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abelianizing homomorphism acting on Fn, and if a* is the induced homo-

morphism from ZFn-^-ZFan, then the image under a* of the free partial

derivative of u, as defined by (2), is not the ordinary partial derivative of

a#(w). Thus the free calculus and the ordinary calculus appear to be dis-

tinct theories. The purpose of this note is to point out a new analogue

between the free calculus and the ordinary calculus, an "inverse function

theorem" for free groups.

Inverse function theorem. Let {yy,m--,yk} be a set of k^n

elements of Fn. Let Jkn denote the kxn "Jacobian" matrix \\dyJdXjW.

(i) If k=n, a necessary and sufficient condition for {yt, • • • ,yn) to

be a generating set for Fn is that Jnn have a right inverse.

(ii) If k<n, a necessary condition for {yy, • • -,yk} to extend to a

generating set {yy, ■ • • ,yn} is that Jkn have a right inverse.

Proof. We first establish the sufficiency of the condition (i).2 Suppose

that B= IßuW is a right inverse of/„„. By a theorem of M. S. Montgomery

[6], the matrix B is also a left inverse of/„„. Hence

(3) 2ß^)=oi>   (w-i.- ••>«)■

Multiplying both sides of (3) by x¡—I, and summing over/, we obtain

(4) |a,!^-S(x3.-1) = x¿-1       (i=l, ••-,«).
S=l 3=1 OX)

By the "fundamental theorem" of free calculus [3]:

^oys
(5) £-¿-'(x, _l)-y,-l       (s =!,...,„).

Hence

(6) ¿ ßjy, -l)-*-l        (i=l,---,n).
s=l

Now let H be the subgroup of Fn generated by yu ■ ■ ■ , yn and let

IH be the ideal of ZFn generated by yy— 1, • ■ • ,yn — 1. According to

equation (6), the ring elements x¿—1 belong to IH for each i=\, • ■ ■ , n.

But then, by Lemma 4.1 of [2], it follows that xt e H for each i=l, • • • , n.

Hence H coincides with Fn, and our result is established.

Necessity may be established by noting that if {yy, ■ ■ ■ , yk) extends to a

basis {yy, • • • ,yn}, then we may write each xt as a word X^yy, ■ • • ,yn),

2 The very brief proof of sufficiency given here was suggested by the referee. It

replaces a longer and more computational proof in an earlier version of this paper.

The author wishes to thank the referee for his constructive suggestions.
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in the generators y¡. Moreover, ify¡ is represented by the word Yi(x1,---, x„),

then we will have

(7)    KXiCft, • • • , y„), ■■■, Xn(yi, ■■■, yn)) = yt       (i = 1, ■ ■ •, n).

The chain rule (see [3]) applied to (7) gives

(8) S (—¡^—) (—^—) -6« {i>j=l' • • • ■n)-

Hence the «X« matrix /„„ has a right inverse, J*n=\\dxildyj\\. Thus

condition (i) is seen to be sufficient. Also the k x n submatrix Jkn formed by

the first k rows of Jnn has a right inverse, namely the submatrix J*k of

J*n formed by the first k columns of /*„. This proves (ii).

As an application, we will use the inverse function theorem to give a

new proof of a classical theorem of J. Nielsen. This application was

suggested by the referee. The proof below is a modification of his proof.

Corollary 1 (J. Nielsen, see [5]). Any set of n elements which

generate a free group of rank n are a set of free generators.

Proof. Suppose that {yi,"',yn} generate Fn, and suppose also

that {ylt • ■ • ,yn} satisfy the relation

(9) r(yi,---,yn)=l,

where we assume that r(y1, • ■ • ,yn) is freely reduced as a word in the

j/s. By the chain rule it follows that

"  dr dy¡

8=i dy¡ dx{

Setting r=(dr/dy1, ■ ■ ■ , drjdyn), we may rewrite (10) in the form

(11) rJnn = o.

By the inverse function theorem, the matrix Jnn has a right inverse, say

B. Multiplying both sides of (11) by B we obtain

(12) rJnnB - rl = r = a,

hence dr/dyt=0 for each j= 1, •••,«. But then it follows that r does not

involve the letter _>>,■, since no cancellations are possible in (1) if a word is

freely reduced. It then follows that r must be the trivial relator. This

completes the proof of Corollary 1.

We observe that our theorem may be applied both ways. Consider

first the case k=n. An algorithm for deciding whether a set of« elements
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in a free group Fn are a basis was discovered by J. Nielsen (see Chapter 2

of [5]), and Nielsen's algorithm translates into a straightforward algorithm

for expressing a Jacobian matrix as a product of elementary invertible

matrices over ZFn.3 On the other hand, it is known [7] that the ringZF„

can be embedded in a skew field K. Since a procedure exists for finding

inverses of invertible matrices over skew fields (see Chapter IV of [1]),

and since such inverses are unique, one may decide whether a Jacobian

matrix is invertible over ZFn by computing its inverse over K, and seeing

whether in fact the entries are in ZFn. This yields a new test to decide if

yx, ' ' ' ,y„ are a basis. This procedure is not however, a practical alter-

native to Nielsen's relatively simple algorithm; the elementary invertible

matrices which are obtained by the method in [1] are almost certainly

not in ZFn, even when their product is in ZFn, so that this procedure is

unnecessarily complex. Our theorem does, however, yield a very simple

necessary condition which a set {y1, ■ • ■ ,yn} must survive if it is a basis:

Corollary 2. Let J*„ denote the image of Jnn under the abelianizing

homomorphism a* acting on ZFn. Then {y^ • ■ ■ ,yn} is a basis for Fn only

if det J%n is a unit in ZF*.

Proof. By Theorem 1, p. 59, of [4], a square matrix over a commu-

tative ring with 1 is invertible if and only if its determinant is a unit.    □

To see that the condition in Corollary 2 is not sufficient, let «=2

and consider the elements

(13) yx = *!,

(14) y2 = x2x1x2x1 x2 x1x2x1 x2 x^x2 x-^ x2x-^x2 x1 .

A simple calculation shows that det\\dyj3x^=1, yet y1 and y2 are not

primitive, by the test given in Corollary N4, p. 169, of [5].

The more difficult question of deciding whether a set of ¿<ai elements

in a free group are primitive was solved by J. H. C. Whitehead [9], [10]

and by E. Rapaport [8], and the inverse function theorem may be applied

to yield an analogous algorithm for deciding when a ¿xn Jacobian

matrix over ZFn has a right inverse. Once again, the Jacobian matrices

corresponding to Whitehead transformations are a very pleasant set of

elementary invertible matrices.

3 Note that the mapping which we have defined from Aut Fn to the ring of invertible

matrices over ZF„ is a crossed homomorphism. That is, if a and ß are automorphisms

of F„ which have Jacobian matrices \\a,¡\\ and \\btl\\ respectively, then the Jacobian

matrix corresponding to aß is the product \\au\\ U6JI«, whereH^-Ha denotes the Jacobian

matrix of ß with respect to the transformed basis tx(xi), ■ ■ ■ , a(x„). Thus, in order to

apply Nielsen's algorithm, one must repeatedly change basis.
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