AN INVERSE FUNCTION THEOREM FOR FREE GROUPS

JOAN S. BIRMAN¹

ABSTRACT. Let F_n be a free group of rank n with free basis x_1, \dots, x_n . Let $\{y_1, \dots, y_k\}$ be a set of $k \le n$ elements of F_n , where each y_i is represented by a word $Y_i(x_1, \dots, x_n)$ in the generators x_j . Let $\partial y_i/\partial x_j$ denote the free derivative of y_i with respect to x_j , and let $J_{kn} = \|\partial y_i/\partial x_j\|$ denote the $k \times n$ Jacobian matrix. Theorem. If k = n, the set $\{y_1, \dots, y_n\}$ generates F_n if and only if J_{nn} has a right inverse. If k < n, the set $\{y_1, \dots, y_k\}$ may be extended to a set of elements which generate F_n only if J_{kn} has a right inverse. Several applications are given.

Let Z denote the ring of rational integers, and let ZF_n denote the integral group ring of a free group F_n which has the free basis x_1, \dots, x_n . Let $\partial/\partial x_j: ZF_n \to ZF_n$ denote the jth free partial derivative, in the sense of R. H. Fox [3]. The mapping $\partial/\partial x_j$ is defined as follows: If $w \in F_n$ is represented by the word $x_{\mu_1}^{\varepsilon_1} \cdots x_{\mu_r}^{\varepsilon_r}$, where $\varepsilon_i = \pm 1$ and $\mu_i = 1, \dots, n$, then $\partial w/\partial x_j \in ZF_n$ is defined by:

(1)
$$\frac{\partial w}{\partial x_j} = \sum_{k=1}^n \delta_{j,\mu_k} \varepsilon_k x_{\mu_1}^{\varepsilon_1} \cdots x_{\mu_{k-1}}^{\varepsilon_{k-1}} x_{\mu_k}^{(\varepsilon_k-1)/2}$$

where δ means the Kronecker symbol. More generally, if $u = \sum_{i=1}^{t} c_i w_i$, $c_i \in \mathbb{Z}$, $w_i \in F_n$, we define

(2)
$$\frac{\partial u}{\partial x_i} = \sum_{i=1}^t c_i \frac{\partial w_i}{\partial x_i}.$$

It is easy to show that this definition is independent of the choice representatives of the elements $w_i \in F_n$.

There are known analogues between the "free" calculus of polynomials in the noncommuting indeterminates x_1, \dots, x_n and the "ordinary" calculus of polynomials in commuting indeterminates, such as the existence of Taylor series [3]. However, it is worth noting that if α is the

Received by the editors November 30, 1972 and, in revised form, February 26, 1973. AMS (MOS) subject classifications (1970). Primary 55A05, 20E99; Secondary 20F55. Key words and phrases. Free calculus, primitive elements, free basis, invertible matrices.

¹ This work was supported in part by NSF Grant GP-34324X.

abelianizing homomorphism acting on F_n , and if α_* is the induced homomorphism from $ZF_n \rightarrow ZF_n^{\alpha}$, then the image under α_* of the free partial derivative of u, as defined by (2), is not the ordinary partial derivative of $\alpha_*(u)$. Thus the free calculus and the ordinary calculus appear to be distinct theories. The purpose of this note is to point out a new analogue between the free calculus and the ordinary calculus, an "inverse function theorem" for free groups.

Inverse function theorem. Let $\{y_1, \dots, y_k\}$ be a set of $k \leq n$ elements of F_n . Let J_{kn} denote the $k \times n$ "Jacobian" matrix $\|\partial y_i/\partial x_i\|$.

- (i) If k=n, a necessary and sufficient condition for $\{y_1, \dots, y_n\}$ to be a generating set for F_n is that J_{nn} have a right inverse.
- (ii) If k < n, a necessary condition for $\{y_1, \dots, y_k\}$ to extend to a generating set $\{y_1, \dots, y_n\}$ is that J_{kn} have a right inverse.

PROOF. We first establish the sufficiency of the condition (i).² Suppose that $B = \|\beta_{ij}\|$ is a right inverse of J_{nn} . By a theorem of M. S. Montgomery [6], the matrix B is also a left inverse of J_{nn} . Hence

(3)
$$\sum_{s=1}^{n} \beta_{is} \left(\frac{\partial y_s}{\partial x_i} \right) = \delta_{ij} \qquad (i, j = 1, \dots, n).$$

Multiplying both sides of (3) by x_j-1 , and summing over j, we obtain

(4)
$$\sum_{s=1}^{n} \beta_{is} \sum_{j=1}^{n} \frac{\partial y_{s}}{\partial x_{j}} (x_{j} - 1) = x_{i} - 1 \qquad (i = 1, \dots, n).$$

By the "fundamental theorem" of free calculus [3]:

(5)
$$\sum_{i=1}^{n} \frac{\partial y_s}{\partial x_i}(x_i - 1) = y_s - 1 \qquad (s = 1, \dots, n).$$

Hence

(6)
$$\sum_{s=1}^{n} \beta_{is}(y_s - 1) = x_i - 1 \qquad (i = 1, \dots, n).$$

Now let H be the subgroup of F_n generated by y_1, \dots, y_n and let I_H be the ideal of ZF_n generated by y_1-1, \dots, y_n-1 . According to equation (6), the ring elements x_i-1 belong to I_H for each $i=1, \dots, n$. But then, by Lemma 4.1 of [2], it follows that $x_i \in H$ for each $i=1, \dots, n$. Hence H coincides with F_n , and our result is established.

Necessity may be established by noting that if $\{y_1, \dots, y_k\}$ extends to a basis $\{y_1, \dots, y_n\}$, then we may write each x_i as a word $X_i(y_1, \dots, y_n)$,

² The very brief proof of sufficiency given here was suggested by the referee. It replaces a longer and more computational proof in an earlier version of this paper. The author wishes to thank the referee for his constructive suggestions.

in the generators y_i . Moreover, if y_i is represented by the word $Y_i(x_1, \dots, x_n)$, then we will have

(7)
$$Y_i(X_1(y_1, \dots, y_n), \dots, X_n(y_1, \dots, y_n)) = y_i$$
 $(i = 1, \dots, n).$

The chain rule (see [3]) applied to (7) gives

(8)
$$\sum_{s=1}^{n} \left(\frac{\partial Y_i(x_1, \dots, x_n)}{\partial x_s} \right) \left(\frac{\partial X_s(y_1, \dots, y_n)}{\partial y_i} \right) = \delta_{ij} \qquad (i, j = 1, \dots, n).$$

Hence the $n \times n$ matrix J_{nn} has a right inverse, $J_{nn}^* = \|\partial x_i/\partial y_j\|$. Thus condition (i) is seen to be sufficient. Also the $k \times n$ submatrix J_{kn} formed by the first k rows of J_{nn} has a right inverse, namely the submatrix J_{nk}^* of J_{nn}^* formed by the first k columns of J_{nn}^* . This proves (ii).

As an application, we will use the inverse function theorem to give a new proof of a classical theorem of J. Nielsen. This application was suggested by the referee. The proof below is a modification of his proof.

COROLLARY 1 (J. Nielsen, see [5]). Any set of n elements which generate a free group of rank n are a set of free generators.

PROOF. Suppose that $\{y_1, \dots, y_n\}$ generate F_n , and suppose also that $\{y_1, \dots, y_n\}$ satisfy the relation

$$(9) r(y_1, \cdots, y_n) = 1,$$

where we assume that $r(y_1, \dots, y_n)$ is freely reduced as a word in the y_i 's. By the chain rule it follows that

(10)
$$\sum_{i=1}^{n} \frac{\partial r}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{i}} = 0, \quad i = 1, \dots, n.$$

Setting $r = (\partial r/\partial y_1, \dots, \partial r/\partial y_n)$, we may rewrite (10) in the form

$$rJ_{nn}=o.$$

By the inverse function theorem, the matrix J_{nn} has a right inverse, say B. Multiplying both sides of (11) by B we obtain

$$rJ_{nn}B=rI=r=o,$$

hence $\partial r/\partial y_j = 0$ for each $j = 1, \dots, n$. But then it follows that r does not involve the letter y_j , since no cancellations are possible in (1) if a word is freely reduced. It then follows that r must be the trivial relator. This completes the proof of Corollary 1.

We observe that our theorem may be applied both ways. Consider first the case k=n. An algorithm for deciding whether a set of n elements

in a free group F_n are a basis was discovered by J. Nielsen (see Chapter 2 of [5]), and Nielsen's algorithm translates into a straightforward algorithm for expressing a Jacobian matrix as a product of elementary invertible matrices over ZF_n . On the other hand, it is known [7] that the ring ZF_n can be embedded in a skew field K. Since a procedure exists for finding inverses of invertible matrices over skew fields (see Chapter IV of [1]), and since such inverses are unique, one may decide whether a Jacobian matrix is invertible over ZF_n by computing its inverse over K, and seeing whether in fact the entries are in ZF_n . This yields a new test to decide if y_1, \dots, y_n are a basis. This procedure is not however, a practical alternative to Nielsen's relatively simple algorithm; the elementary invertible matrices which are obtained by the method in [1] are almost certainly not in ZF_n , even when their product is in ZF_n , so that this procedure is unnecessarily complex. Our theorem does, however, yield a very simple necessary condition which a set $\{y_1, \dots, y_n\}$ must survive if it is a basis:

COROLLARY 2. Let J_{nn}^{α} denote the image of J_{nn} under the abelianizing homomorphism α_* acting on ZF_n . Then $\{y_1, \dots, y_n\}$ is a basis for F_n only if $\det J_{nn}^{\alpha}$ is a unit in ZF_n^{α} .

PROOF. By Theorem 1, p. 59, of [4], a square matrix over a commutative ring with 1 is invertible if and only if its determinant is a unit. \Box To see that the condition in Corollary 2 is not sufficient, let n=2 and consider the elements

(13)
$$y_1 = x_1$$
,

$$(14) y_2 = x_2 x_1 x_2 x_1^{-1} x_2^{-1} x_1^2 x_2^2 x_1^{-2} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2^2 x_1^2 x_2^{-2} x_1^{-2}.$$

A simple calculation shows that $\det \|\partial y_i/\partial x_j\|^{\alpha} = 1$, yet y_1 and y_2 are not primitive, by the test given in Corollary N4, p. 169, of [5].

The more difficult question of deciding whether a set of k < n elements in a free group are primitive was solved by J. H. C. Whitehead [9], [10] and by E. Rapaport [8], and the inverse function theorem may be applied to yield an analogous algorithm for deciding when a $k \times n$ Jacobian matrix over ZF_n has a right inverse. Once again, the Jacobian matrices corresponding to Whitehead transformations are a very pleasant set of elementary invertible matrices.

³ Note that the mapping which we have defined from Aut F_n to the ring of invertible matrices over ZF_n is a crossed homomorphism. That is, if α and β are automorphisms of F_n which have Jacobian matrices $||a_{ij}||$ and $||b_{ij}||$ respectively, then the Jacobian matrix corresponding to $\alpha\beta$ is the product $||a_{ij}|| ||b_{ij}||_{\alpha}$, where $||b_{ij}||_{\alpha}$ denotes the Jacobian matrix of β with respect to the transformed basis $\alpha(x_1), \dots, \alpha(x_n)$. Thus, in order to apply Nielsen's algorithm, one must repeatedly change basis.

REFERENCES

- 1. E. Artin, Geometric algebra, Interscience Tracts in Pure and Appl. Math., no. 3, Interscience, New York, 1957. MR 18, 553.
- 2. D. Cohen, Groups of cohomological dimension one, Lecture Notes in Math., vol. 245, Springer-Verlag, Berlin and New York, 1972.
- 3. R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547-560. MR 14, 843.
- 4. N. Jacobson, Lectures in abstract algebra. I. Basic concepts, Van Nostrand, Princeton, N.J., 1951. MR 12, 794.
- 5. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure and Appl. Math. vol. 13, Interscience, New York, 1966. MR 34 #7617.
- 6. M. S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540. MR 39 #327.
- 7. B. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252. MR 11, 311.
- 8. E. S. Rapaport, On free groups and their automorphisms, Acta Math. 99 (1958), 139-163. MR 24 #A1302.
- 9. J. H. C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936), 48-56.
- 10. —, On equivalent sets of elements in a free group, Ann. of Math. 37 (1936), 782-800.

DEPARTMENT OF MATHEMATICS, STEVENS INSTITUTE OF TECHNOLOGY, HOBOKEN, New Jersey 07030

Current address: Department of Mathematics, Columbia University, New York, New York 10027