COMPACT SUBSETS OF Rⁿ AND DIMENSION OF THEIR PROJECTIONS

SIBE MARDEŠIĆ1

ABSTRACT. In this paper it is proved that a k-dimensional closed subset $X \subset \mathbb{R}^n$ admits a projection p into one of the coordinate k-planes such that $\dim p(X) = k$.

The purpose of this note is to prove the following theorem:

THEOREM. Let $X \subset \mathbb{R}^n$ be a k-dimensional compact subset of \mathbb{R}^n , $1 \leq k \leq n$. Then there exist k different factors $R_{i_1} = R, \dots, R_{i_k} = R$ of \mathbb{R}^n , $1 \leq i_1 < \dots < i_k \leq n$, such that $\dim p_{i_1 \dots i_k}(X) = k$, where $p_{i_1 \dots i_k}$ is the projection $\mathbb{R}^n \to R_{i_1} \times \dots \times R_{i_k}$.

The question of whether the above statement is true was raised by J. D. Lawson in connection with a problem concerning *n*-dimensional topological semilattices on a Peano continuum. I am indebted to J. Nagata for bringing it to my attention.

It is well known that a subset $Y \subseteq \mathbb{R}^k$ is k-dimensional if and only if it has nonempty interior, Int $Y \neq \emptyset$ (see, e.g., [1, Theorem IV.3, p. 44]). Consequently, the theorem can be given the following equivalent form:

THEOREM. Let $X \subseteq \mathbb{R}^n$ be a k-dimensional compact subset of \mathbb{R}^n , $1 \leq k \leq n$. Then there exist $1 \leq i_1 < \cdots < i_k \leq n$ such that $\operatorname{Int} p_{i_1 \cdots i_k}(X) \neq \emptyset$ in $R_{i_1} \times \cdots \times R_{i_k}$.

We prove the theorem by induction on n using this second form. If n=1, then k=1 and $p_1: R \rightarrow R$ is the identity so that $p_1(X)=X$. However, $X \subset R$ must contain a nonempty open set for otherwise $R \setminus X$ would be dense in X, which would imply dim $X \leq 0$ (inductive dimension), contradicting the assumption dim X=1.

We now assume that the theorem holds for positive integers $\leq n-1$, $n\geq 2$, and we prove it for n. Let $X\subset R^n$, dim X=k, $k\leq n$. Consider any of

Received by the editors December 13, 1972 and, in revised form, February 16, 1973. AMS (MOS) subject classifications (1970). Primary 54F45; Secondary 54E45, 54F05, 22A30.

Key words and phrases. Dimension, projection, Euclidean space, Baire category theorem, topological semilattice.

¹ This paper has been written while the author was visiting the University of Pittsburgh on leave from the University of Zagreb.

[©] American Mathematical Society 1973

the *n* factors of R^n , say $R_1 = R$, so that $R^n = R_1 \times R^{n-1}$. Let $S_1 \subseteq R_1$ be the set of all points $\xi_1 \in R_1$ such that

(1)
$$\dim(X \cap (\xi_1 \times R^{n-1})) \leq k - 2.$$

Furthermore, for any k-1 different integers $2 \le i_1 < \cdots < i_{k-1} \le n$, consider all balls $B_{i_1 \cdots i_{k-1}}(q, \varepsilon) \subseteq R_{i_1} \times \cdots \times R_{i_{k-1}}$ with rational radius $\varepsilon > 0$ and center $q = (q_{i_1}, \cdots, q_{i_{k-1}})$ all of whose coordinates are rational. Let $S_{i_1 \cdots i_{k-1}}(q, \varepsilon)$ be the set of all points $\xi_1 \in R_1$ such that

(2)
$$\xi_1 \times B_{i_1 \cdots i_{k-1}}(q, \varepsilon) \subset p_{1i_1 \cdots i_{k-1}}(X \cap (\xi_1 \times R^{n-1})).$$

We shall first show that

$$(3) R_1 \setminus S_1 \subseteq \bigcup S_{i_1 \cdots i_{k-1}}(q, \varepsilon),$$

where the union is taken over all sequences $2 \le i_1 < \cdots < i_{k-1} \le n$ and over all rational (q, ε) and thus has countably many terms. Indeed, if $\xi_1 \in R_1 \backslash S_1$, then $\dim(X \cap (\xi_1 \times R^{n-1})) = l \le n-1$ is k-1 or k. By the induction hypothesis, there is a sequence $2 \le i_1 < \cdots < i_l \le n-1$ such that the set $p_{1i_1 \cdots i_l}(X \cap (\xi_1 \times R^{n-1}))$ contains a nonempty open subset of $\xi_1 \times R_{i_1} \times \cdots \times R_{i_l}$ and a fortiori contains a ball $\xi_1 \times B_{i_1 \cdots i_l}(q, \varepsilon)$ with (q, ε) rational. If l = k-1, this yields (2) and thus $\xi_1 \in S_{i_1 \cdots i_{k-1}}(q, \varepsilon)$. If l = k, we consider the projection

$$p: R_1 \times R_{i_1} \times \cdots \times R_{i_{k-1}} \times R_{i_k} \rightarrow R_1 \times R_{i_1} \times \cdots \times R_{i_{k-1}}$$

and note that

$$p_{1i_1\cdots i_{k-1}} = pp_{1i_1\cdots i_k},$$

$$p(\xi_1 \times B_{i_1\cdots i_k}(q,\varepsilon)) = \xi_1 \times B_{i_1\cdots i_{k-1}}(p(q),\varepsilon)$$

and $(p(q), \varepsilon)$ is rational. Consequently, $p_{1i_1\cdots i_{k-1}}(X\cap(\xi_1\times R^{n-1}))$ contains $\xi_1\times B_{i_1\cdots i_{k-1}}(p(q), \varepsilon)$ and therefore $\xi_1\in S_{i_1\cdots i_{k-1}}(p(q), \varepsilon)$. Formula (3) is thus established.

If a given set $S_{i_1\cdots i_{k-1}}(q,\varepsilon)$ intersects a nondegenerate interval $I\subset R_1$ in a set D which is dense in I, then by (2),

$$(4) D \times B_{i_1\cdots i_{k-1}}(q,\,\varepsilon) \subset p_{1i_1\cdots i_{k-1}}(X).$$

Since $p_{1i_1\cdots i_{k-1}}(X)$ is compact and $\bar{D}=I$, (4) implies

$$(5) I \times B_{i_1\cdots i_{k-1}}(q, \varepsilon) \subset p_{1i_1\cdots i_{k-1}}(X).$$

Consequently, in $R_1 \times R_{i_1} \times \cdots \times R_{i_{k-1}}$

(6) Int
$$p_{1i_1\cdots i_{k-1}}(X) \neq \emptyset$$
.

We have thus either a projection

$$p_{1i_1\cdots i_{k-1}}: R^n \to R_1 \times R_{i_1} \times \cdots \times R_{i_{k-1}}, \quad 1 < i_1 < \cdots < i_{k-1} \le n,$$

satisfying (6), or every set $S_{i_1\cdots i_{k-1}}(q, \varepsilon)$ is nowhere dense in R_1 . However, in the latter case, by Baire's theorem, $R_1 \setminus \bigcup S_{i_1\cdots i_{k-1}}(q, \varepsilon)$ must be dense in R_1 . It then follows from (3) that S_1 too is a dense subset of R_1 .

The same argument applies to any other $j \in \{1, \dots, n\}$ and we conclude that either there is a projection $p_{i_1 \dots i_k} \colon R^n \to R_{i_1} \times \dots \times R_{i_k}, \ 1 \le i_1 < \dots < i_k \le n$, such that $j \in \{i_1, \dots, i_k\}$ and Int $p_{i_1 \dots i_k}(X) \ne \emptyset$ in $R_{i_1} \times \dots \times R_{i_k}$ or the set $S_j \subset R_j$ of all $\xi_j \in R_j$ satisfying

(7)
$$\dim(X \cap (R_1 \times \cdots \times R_{j-1} \times \xi_j \times R_{j+1} \times \cdots \times R_n) \leq k-2$$
 is dense in R_i .

However, S_j cannot be dense in R_j for all $j \in \{1, \dots, n\}$. Indeed, that would imply that every point $x \in X$ admits arbitrarily small neighborhoods $U = (\alpha_1, \beta_1) \times \dots \times (\alpha_n, \beta_n) \subset R^n$, where $\alpha_j, \beta_j \in S_j$ for all j. Since, by (7), the boundary of U meets X in a set of dimension $\leq k-2$, we would have dim $X \leq k-1$, which contradicts the assumption. This completes the proof of the theorem.

REMARK 1. For k=n we have here an alternate proof for the fact that an *n*-dimensional compact subset $X \subseteq \mathbb{R}^n$ has a nonempty interior.

REMARK 2. A compact subset $X \subset \mathbb{R}^n$ need not be of dimension $\dim X \geq k$ if it admits a projection $p_{i_1 \cdots i_k} \colon \mathbb{R}^n \to R_{i_1} \times \cdots \times R_{i_k}$ with $\dim p_{i_1 \cdots i_k}(X) = k$. E.g., let I = [0, 1] and let $f \colon I \to I^2$ be a continuous surjection (I^2 is a Peano continuum). Then $X = \{t \times f(t) | t \in I\} \subset \mathbb{R}^3$ is an arc and $\dim p_{23}(X) = 2$.

REMARK 3. The conclusion of the theorem remains true if one weakens the assumptions to X being a closed k-dimensional subset of R^n . Indeed, every closed X is the union of a sequence of compact subsets $X_i \subseteq R^n$, $i=1, 2, \cdots$. Since $k=\dim X=\max\{\dim X_i|i=1, 2, \cdots\}$, there is an i such that $\dim X_i=k$ and the conclusion follows from the one in the compact case.

REFERENCE

1. W. Hurewicz and W. Hallman, *Dimension theory*, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N.J., 1948. MR 3, 312.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PENNSYLVANIA 15213

Current address: Institute of Mathematics, University of Zagreb, Zagreb, Yugoslavia