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COMPACT SUBSETS  OF  Rn AND DIMENSION

OF THEIR PROJECTIONS

SIBE  MARDESiC1

Abstract. In this paper it is proved that a ¿-dimensional

closed subset X<^Rn admits a projection p into one of the co-

ordinate ¿-planes such that dimp(X)=k.

The purpose of this note is to prove the following theorem :

Theorem. Let X<=Rn be a k-dimensional compact subset of Rn,

l^k^n. Then there exist k different factors i?¡ =R, ■ ■ ■ ,_/?¿ =R of

Rn, l^/j<-•-</t^«, such that dimpi: ...f (X)=k, where p( ...¿ is the

projection Rn-*Rh X ■ ■ • X R{.

The question of whether the above statement is true was raised by

J. D. Lawson in connection with a problem concerning «-dimensional

topological semilattices on a Peano continuum. I am indebted to J.

Nagata for bringing it to my attention.

It is well known that a subset y<= Rk is ¿-dimensional if and only if it

has nonempty interior, Int Y¿¿0 (see, e.g., [1, Theorem IV.3, p. 44]).

Consequently, the theorem can be given the following equivalent form:

Theorem. Let X<^Rn be a k-dimensional compact subset of Rn,

l^k<n. Then there exist l^h<- • -<ik^n such that lntph...i (X)¿¿0

in R¡ X •   -xRi .

We prove the theorem by induction on n using this second form.

If n=l, then k=l andpx:R—fR is the identity so th&tp1(X)=X. However,

X^R must contain a nonempty open set for otherwise R\X would be

dense in X, which would imply dim X^O (inductive dimension), con-

tradicting the assumption dim X= 1.

We now assume that the theorem holds for positive integers ^«—1,

n^.2, and we prove it for n. Let Jc Rn, dim X=k, k^n. Consider any of
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the n factors of Rn, say Ry = R, so that Rn=R1xRn~1. Let SyCRy be

the set of all points £x e Ry such that

(1) dim(A- n (fx x R71-1)) ̂ k -2.

Furthermore, for any Ac—1 different integers 2^iy<- • •<4-i=w>

consider all balls Bii...ik _{\q, e)<^Riix- ■ 'XRik , with rational radius

e>0 and center q=(qh, ■ ■ ■ , q^ ) all of whose coordinates are rational.

Let iSj ...,- _ (<7, e) be the set of all points |x 6 i?j such that

(2) f, x ^„^(9, e) c p^^jr n (fc x i?"-1)).

We shall first show that

(3) W, <= U V'-ifo 6),

where the union is taken over all sequences 2^/1<- • -<4_i^« and

over all rational (q, e) and thus has countably many terms. Indeed,

if ÇyeRy\Sy, then dim(Xn(Ç1xRn-1))=l<in-l is k-l or k. By the
induction hypothesis, there is a sequence 2^¿1<- • -</¡^n—1 such that

the set pu ...j (ln(^xÄ"_1)) contains a nonempty open subset of

ÇyXR^x- • • xRit and a fortiori contains a ball CyXB^..^ (q, s) with

(</, e) rational. If l=k— 1, this yields (2) and thus £j € S{ „.<»_,(?. «)•

If/=rV, we consider the projection

p : Ry X R,  X ■ • • X R¿     X R¡ ->- Ry X R,   x • ■ • X R¡

and note that

Piti X B^.^q, e)) = £ i X B{i...hJp(q), e)

and (p(q), e) is rational. Consequently,p1( ..^ _ (Xn(fjXi?™-1)) contains

ÇiXBh...ik_i(p(q),e) and therefore fx e Sh...iki(p(q), e). Formula (3)

is thus established.

If a given set St   {   (<q, s) intersects a nondegenerate interval /c rx

in a set D which is dense in I, then by (2),

(4) D X Bh...ikJq, s) c Pyh...ikjX).

Since/^ ...f    00 is compact and 5=7, (4) implies

(5) / X Bh...iki(q, e) c ft^JJf).

Consequently, in ^ x Äfi X • • • X i?íjti

(6) lntpUi...iki(X)^ 0.
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We have thus either a projection

Pth"i^L:Rtt — ^1   X   RH   X   • ' •   X   ̂ »-l» 1   <  'l < <  <*-!  = ">

satisfying (6), or every set St „^ (9, e) is nowhere dense in J?1# However,

in the latter case, by Baire's theorem, R]\\J Su-..( (q, e) must be dense

in Rv It then follows from (3) that Sj too is a dense subset of Rv

The same argument applies to any other y e {1, • • • , n} and we conclude

that either there is a projection pii...ik:Rn-+Riix- ■ 'XR{, l^ïi<- • •<

ik^n, such that j e {iu • • • , ik} and Int piv.i(\X)j£ 0 in Rh x ■ • • x Rik

or the set S^c Rj of all f, e ^3 satisfying

(7)    dim(Y O (J?x X • • • X Ä3_! X f, X &+1 X • • • X Ä„) 2g Jfc — 2

is dense in J?,.
However, S, cannot be dense in R¡ for ally e {1, ■ • • , «}. Indeed, that

would imply that every point x e X admits arbitrarily small neighborhoods

U=(oi1,ß1)X---x(xn,ßn)^Rn, where a3-, & e S, for all j. Since,

by (7), the boundary of U meets Xin a set of dimension ^¿—2, we would

have dim X^k—l, which contradicts the assumption. This completes the

proof of the theorem.

Remark 1. For k=n we have here an alternate proof for the fact

that an n-dimensional compact subset Xa Rn has a nonempty interior.

Remark 2. A compact subset X<=Rn need not be of dimension

dimX^k if it admits a projection pt , : Rn-*-Rt x • • • x Rik with

dimpii...ik(X)=k. E.g., let 7=[0, 1] and let f.I-^-P be a continuous

surjection (I2 is a Peano continuum). Then X={txf(t)\t eI}c:R? js an

arc and dimp23(X)=2.

Remark 3. The conclusion of the theorem remains true if one weakens

the assumptions to X being a closed ¿-dimensional subset of Rn. Indeed,

every closed X is the union of a sequence of compact subsets X^R",

i=l, 2, • • •. Since ¿=dim V=max{dim X(\i=l, 2, ■ ■ ■}, there is an i

such that dim X¡=k and the conclusion follows from the one in the

compact case.
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