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ON INVARIANT LINEAR  MANIFOLDS1

P.   A.   FILLMORE2

Abstract. For a linear transformation A on a Banach space,

let ¿?(A) be the lattice of (not necessarily closed) invariant sub-

spaces of A For abounded it is shown that if ¿e(A®A)^Se(T®T),

or if -S?(/!)>= ¿?(T) and Tcommutes with A, then ris a polynomial

in A. In the case of a Hubert space, if Sf(A)^ SC<A*) then A* is a
polynomial in A.

Introduction. A linear transformation F on a vector space V is algebraic

if there is a nonzero polynomial p such thatp(T)=0; it is locally algebraic

if for each x e V there is a nonzero polynomial p (depending on x) such

that p(T)x=0. A locally algebraic transformation need not be algebraic,

but Kaplansky has shown [4, Theorem 15] that a bounded locally algebraic

transformation on a Banach space must be algebraic. In this note we

consider extensions of this fact and some related matters.

1. Specifically, let A and F be linear transformations on V such that

Fis locally a polynomial in A ; that is, for each x e V there is a polynomial

p (depending on x) with Tx=p(A)x. Must F then be a polynomial in AI

This question may be reformulated as follows: For any linear transfor-

mation S on V, let

¿?(S) = {M | Mis a subspace with SM c M},

the lattice of invariant subspaces of S. Now observe that T is locally a

polynomial in A if and only if£?(A) <= tfCT) (for if AM<= M, thenp(A)M^

M for all polynomialsp, so that when Fis locally a polynomial in A we

have FA/c M; on the other hand, if x e V and

Mx = {p(A)x \pis a polynomial},

then xeMx eSP(A), so that when Se(A)^SeCT) we get xeMxe Sf(T),

Tx e Mx, and Tx=p(A)x for some polynomial p). Thus our question

becomes: does áC(A)^^C(T) imply that F is a polynomial in Al The
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answer is no, even for bounded transformations on a Banach space.

For a simple example, take

(0    1\ /l    0\
A = and    T =

\0    0/ \0   2/

on a two-dimensional space.

Motivated by the fact that a locally algebraic transformation is alge-

braic on each finite-dimensional subspace, we next ask whether T must

be a polynomial in A whenever it is a polynomial in A on each finite-

dimensional subspace. Again this is false, but we will show that the

analogue of Kaplansky's Theorem holds. Actually a little more is true:

Theorem 1. Let A and Tbe linear transformations on a Banach space V,

with A bounded. If T is a polynomial in A on each two-dimensional subspace

of V, then T is a polynomial in A.

Before proving this, a few remarks are in order. For any linear trans-

formation S on V, let Sl2) = S®S acting on V®V. Then, as above, T is

a polynomial in A on each two-dimensional subspace if and only if

SC(Ai2))<=Sf(Ti2)). For a family £r° of linear transformations, let

y<2> = {S<2)\Se¿f},   and

Se (ST) = {M I M e Sf(S) for all S e ST).

A general question of the type contemplated in the theorem goes as

follows: For which algebras sé of linear transformations is it true that

Sf(sH2))<=S?(T<2)) implies Te si? (For Theorem 1 take sé to be all

polynomials in A.)

Lemma. If si is an algebra with a separating vector, then Sf(sH2))(^

Sf(T{2)) implies Te si.

Proof. Let x0 be a separating vector, so that A e sé and Ax0=0

imply A = 0. Fix A0e si with Tx0 = A0x0. If y is any vector, by hypothesis

there exists A e si such that Tx0=Ax0 and Ty=Ay. Then (A— A0)x0=0

so A=A0 and Ty=A0y. Since y is arbitrary, T=A0, as required.

Proof of Theorem. We need only show that for any bounded linear

transformation A on a Banach space, the algebra of polynomials in A

has a separating vector. Suppose first that A is locally algebraic, so that

A is algebraic by Kaplansky's theorem. If m is the minimum polynomial

of A, it is easy to see (cf. Kaplansky's proof) that there is a vector x0

at which the local minimum polynomial is m. Thus if p(A)x0=0 then m

divides p, and so p(A)=0. Hence x0 is the required separating vector.

If A is not locally algebraic, there is a vector x0 such that p(A)x0=0

implies p = 0, and again we have a separating vector.
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Remarks, (i) As the proof shows, the theorem remains true without

the topological hypotheses except when A is locally algebraic but not

algebraic. To see that this case is an exception, let V=V2®V3®- • •

(algebraic direct sum) with Vn an «-dimensional vector space, let Jn

be the n X n Jordan cell
"0

0 "1

1

1    0

acting in Vn, and let A=J2®JA®- ■ •. Then

T = J2 © (I3 + Jt) © (/4 + J\ + J\) © • • •

satisfies y(A{n))c<g(Tl'n)) for all n, and yet F is not a polynomial in A.

(ii) Recall the question raised before the lemma: In what circumstances

does ¿f(si<2))e£e(T(2)) imply Te sil For n=l the n-closure of si is

defined by
Cn(si) = {TI £?(si^) c „§?(r<">)}

and the strict closure by

cx(si) = n cn(si).

Obviously Cx(si)=> C2(si)=> ■ ■-=>Cx(si)=>si. If si' is the commu-

tant of si (the algebra of linear transformations that commute with every

member of si), and si" the commutant of si', one easily shows the

additional relation si" ^>C2(si). With this notation the question under

consideration concerns the validity of the equation C2(s/) = si. This can

be conveniently split into C2(si) = Cœ(si) and Cao(si)=si. The first of

these has received some study. For example, Jacobson has shown that if

C2(si) is the algebra of all linear transformations, then so is Cm(si)

[6, p. 60]. More generally, if si is completely reducible (every invariant

subspace has an invariant complement), then si" = C00(si) [1, §4,

Theorem 1], so that C2(s/)=Cx(si) by the observation above.

2. We now consider several situations in which it follows from y(si)<^

J¡?(T) that Fis a polynomial in A. For finite-dimensional spaces, a com-

plete analysis of transformations A with this property is carried out in

[3].
For example, let A be a bounded linear transformation on a Banach

space, and suppose that A is similar to a transformation of the form
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B®B. If S?(A)<=S?(T), it is easy to see that T must be simultaneously

similar to a transformation of the form 5©5, so that S?(B{2))<=S?(Si2)),

and the theorem implies that Fis a polynomial in A.

In another direction, it is known [2, Theorem 10] that on a finite-

dimensional space, if Sf(A)<=S?(T) and F commutes with A, then T is

a polynomial in A.

Theorem 2. Let A and T be linear transformations on a Banach space,

with A bounded. If S?(A)<^S?(T) and T commutes with A, then T is a

polynomial in A.

Proof. Suppose first that A is algebraic. For any vectors x and y,

let Mx_y be the subspace consisting of all r(A)x+s(A)y, where r and s

are polynomials. Then MXiV is invariant for both A and T, and their

restrictions continue to satisfy the hypotheses. Since Mx¡y is finite-

dimensional there is by [2, Theorem 10] a polynomialp such that T=p(A)

on Mx¡y. In particular, T=p(A) on the span of x and y. Because x and y

are arbitrary, Theorem 1 implies that Fis a polynomial in A.

If A is not algebraic, then it is not locally algebraic, and hence there is a

vector x0 such that p(A)x0=0 only for p=0. Fix a polynomial p0 with

Tx0=p0(A)x0. We show T=p0(A). For any vector y there are polynomials

r and s such that Ty=r(A)y and T(x0+y)=s(A)(x0+y). Then

(Po(A) - s(A))x0 = (s(A) - r(A))y;

call this vector z. If z=0 then/>0=i and s(A)y=r(A)y, so that Ty=p0(A)y.

If Z5¿0, note first that p(A)z=0 only for/?=0; since F commutes with A

we get

Fz = p0(A)z = r(A)z,

so that/?0=r and Ty=p0(A)y as before. Because y is arbitrary, T=p0(A)

as asserted.

We conclude with a result suggested by P. Rosenthal. In his paper

[5] with H. Radjavi, it is shown that in certain circumstances, if sé is

an algebra of bounded linear transformations on a Hubert space such that

sé* leaves invariant every closed invariant subspace of si, then sé is

selfadjoint.

Theorem 3. If A is a bounded linear transformation on a Hubert

space such that Sf(A)'=Sf(A*), then A* is a polynomial in A. In particular,

A is normal.

Proof. By Theorem 2 it is enough to show that A*Ax=AA*x for

every vector x. Let Mx={p(A)x\p polynomial}.
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Assume first that Mx is finite-dimensional. The restrictions of A and

A* to Mx inherit the hypothesis; on choosing an orthonormal basis for

Mx so that the matrix of A\MX is 'triangular, this is seen to imply that the

matrix is actually diagonal, and hence that A*Ax=AA*x.

If Mx is infinite-dimensional, thenp(A)x=0 impliesp=0. By hypothesis

there are polynomials r, s, and t such that A*x=r(A)x, A*Ax=s(A)Ax,

and A*(Ax—Xx)=t(A)(Ax—Xx). Hence

(s(A)A - Xr(A))x = t(A)(A - X)x,

zs(z) — Xr(z) = t(z)(z — X),

and s(X)=r(X) for all A^O. Consequently s=r and A*Ax=s(A)Ax=

r(A)Ax=AA*x as required.
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