FACTORABLE BOUNDED OPERATORS AND SCHWARTZ SPACES STEVEN F. BELLENOT ABSTRACT. A necessary condition for factoring continuous linear maps with domain c_0 or l_∞ through a class of spaces which include the l_p spaces (in fact, include the \mathcal{L}_p spaces) for $2 \leq p < \infty$ and a weaker result for l_1 are obtained. As an application, examples of Schwartz spaces are constructed and used to answer questions of Diestel, Morris and Saxon; in particular it is shown that there are Schwartz spaces which cannot be embedded in a product of l_p spaces, 1 . For $2 \le p < \infty$, we show the following: If S is a continuous linear map from c_0 or l_∞ into a normed space, then S is factorable through a space satisfying Clarkson's "parallelogram" laws for L_p spaces ([1] or see (1) below) only if a sequence, which is simply constructed from S, belongs to l_p . A similar result is obtained for diagonal maps on l_1 . Examples are constructed to show that for no p, $1 , does the variety <math>v(l_p)$ (defined below) contain the variety of all Schwartz spaces [5, p. 275]. In particular this shows that the theorem of Grothendieck [4] that any nuclear space can be topologically embedded in a product of l_p spaces, $1 \le p \le \infty$, (and Saxon's generalization [9]) cannot be extended to Schwartz spaces. Furthermore, an example borrowed from Pietsch [8] shows that the variety of nuclear spaces is properly contained in $\bigcap v(l_p)$, $1 \le p \le \infty$. These examples answer or partially answer questions raised by Diestel, Morris and Saxon in [3] or by Diestel and Morris in [2]. By a map we shall mean a continuous linear function. To say a map $S: X \to Y$ can be factored through Z means that there exist maps $T: X \to Z$ and $J: Z \to Y$ such that S = JT. Let e_n be the sequence with one in the nth place and zero otherwise. A variety (see [2] or [3]) is a collection of locally convex topological vector spaces closed with respect to taking subspaces, quotients by closed subspaces, products and isomorphic images. If B is a locally convex topological vector space, we let v(B) be the Received by the editors March 26, 1973 and, in revised form, April 30, 1973. AMS (MOS) subject classifications (1970). Primary 46E30, 46A15; Secondary 47A99, 47B99. Key words and phrases. Factorable maps, l_p -spaces, Schwartz spaces, nuclear spaces, varieties of topological vector spaces. [©] American Mathematical Society 1974 smallest variety containing B. For $2 \le p < \infty$, it is convenient to define a Q_p space to be any normed space X which has an equivalent norm $\|\cdot\|$ satisfying (1) $$\forall x, y \in X$$, $||x + y||^p + ||x - y||^p \ge 2(||x||^p + ||y||^p)$. Clarkson, in [1, Theorem 2, p. 400], shows that the usual norms of L_p and l_p satisfy (1) for $2 \le p < \infty$. It is easy to show that the property of being a Q_p space is preserved under taking subspaces, quotients by closed subspaces, and finite products. Thus any \mathcal{L}_p space (see [6] or [7]) is a Q_p space for $2 \le p < \infty$ and any normed space in $\nu(l_p)$ [3, Theorem 4.1, p. 217] is a Q_p space for $2 \le p < \infty$. It is also fairly easy to show that for $1 < q \le 2$, the dual of any normed space in $\nu(l_q)$ is a Q_p space, where $p^{-1} + q^{-1} = 1$. The following lemma singles out a result needed for the theorem; it also shows how Clarkson's "parallelogram" laws figure into the main result. LEMMA. Let $2 \le p < \infty$, X a Q_p space, $T: c_0 \to X$ a map and (λ_n) a sequence such that $(\lambda_n^{-1}) \notin l_p$; then there exists a subsequence (n') of (n) such that $|\lambda_{n'}| \|Te_{n'}\| \to 0$ as $n' \to \infty$. **PROOF.** Suppose not; then there exists an $\varepsilon > 0$ and an integer M, such that $n \ge M$ implies $|\lambda_n| ||Te_n|| \ge \varepsilon$. We show by induction that there is some choice of signs so that (2) $$||T(e_M \pm \cdots \pm e_{M+k})||^p \ge \varepsilon^p \sum_{j=0}^k |\lambda_{M+j}^{-1}|^p.$$ By assumption (2) is true for k=0. Suppose that (2) is true for k=n with choice of signs $x_n=e_M\pm e_{M+1}\pm \cdots \pm e_{M+n}$. Now by (1) and the induction hypothesis we have $$\begin{split} \|T(x_n + e_{M+n+1})\|^p + \|T(x_n - e_{M+n+1})\|^p \\ & \ge 2(\|Tx_n\|^p + \|Te_{M+n+1}\|^p) \\ & \ge 2\bigg(\varepsilon^p \sum_{i=0}^n |\lambda_{M+i}^{-1}|^p + \varepsilon^p |\lambda_{M+n+1}^{-1}|^p\bigg); \end{split}$$ so (2) is established. But this is impossible since for all k, $$||e_M \pm e_{M+1} \pm \cdots \pm e_{M+k}|| = 1, \qquad \sum |\lambda_{M+j}|^p$$ diverges and thus (2) implies that T is unbounded. THEOREM. A necessary condition for the map S from c_0 or l_{∞} into a normed space Y to be factorable through a Q_p space, $2 \le p < \infty$, is that the sequence ($||Se_n||$) belong to l_p . PROOF. The theorem for c_0 clearly implies the theorem for l_{∞} . Let $2 \le p < \infty$ and suppose $S: c_0 \to Y$ can be factored through the Q_p space X by the maps $T: c_0 \to X$ and $J: X \to Y$, but that $(\|Se_n\|) \notin l_p$. Let $V: c_0 \to c_0$ be the map with $Ve_n = e_{\pi(n)}$ where the one-one function π from N into N (N the positive integers) is such that, for all n, $\|SVe_n\| \ne 0$ and $(\|SVe_n\|) \notin l_p$. By assumption, SV can be factored through X by the maps TV and J, that is, SV = JTV. The lemma implies there exists a subsequence (n') of (n) such that $\|SVe_{n'}\|^{-1}\|TVe_{n'}\| \to 0$ as $n' \to \infty$. But by continuity of J we have as $n' \to \infty$: $$1 = \|SVe_{n'}\|^{-1} \|SVe_{n'}\| = \|J(\|SVe_{n'}\|^{-1} TVe_{n'})\| \to 0.$$ This contradiction completes the proof. A diagonal map on a space Λ , of sequences, is a map $T_{\lambda}: \Lambda \to \Lambda$, where λ is a sequence (λ_n) and $T_{\lambda}(\mu_n) = (\lambda_n \mu_n)$. COROLLARY. A necessary condition for the diagonal map $T_{\lambda}: l_1 \to l_1$ to be factorable through a space X, whose dual is a Q_p space $(2 \le p < \infty)$ is that $\lambda = (\lambda_n) \in l_p$. PROOF. If $T_{\lambda}: l_1 \rightarrow l_1$ can be factored through X, then $T_{\lambda}^*: l_{\infty} \rightarrow l_{\infty}$ can be factored through X^* . The proof now follows from the theorem and the fact that the adjoint of T_{λ} , T_{λ}^* is the diagonal map $T_{\lambda}: l_{\infty} \rightarrow l_{\infty}$. In [2] and [3] the following questions were raised: - (i) Is $\bigcap v(B)$, $B \in \mathcal{B}$ (where $\mathcal{B} = \{\text{all infinite dimensional Banach spaces}\}$), equal to S, the variety of all Schwartz spaces; N, the variety of all nuclear spaces, or neither? - (ii) Does $v(l_p)$, 1 , contain S? The following examples show that for no p, $1 , is (ii) true and thus <math>\bigcap \nu(B)$, $B \in \mathcal{B}$, is properly contained in S [2]. Furthermore we show $\bigcap \nu(l_p)$, $1 \le p \le \infty$, properly contains N. EXAMPLES. Let $\lambda = (\lambda_n)$ be any sequence converging to zero such that, for $k \ge 1$, $\sum |\lambda_n|^k = \infty$, and let T_λ be the diagonal map. Let Λ_0 (respectively, Λ_1 , Λ_2 , Λ_∞) be the projective limit of the sequence: $$\cdots \xrightarrow{T_{\lambda}} E \xrightarrow{T_{\lambda}} E \xrightarrow{T_{\lambda}} E,$$ where $E=c_0$ (respectively, $E=l_1$, $E=l_2$, $E=l_\infty$). Each of Λ_i , $i=0,1,2,\infty$ is a Schwartz-Fréchet space [5, Proposition 9, p. 282], that is not nuclear. Λ_0 and Λ_∞ (respectively Λ_1) do not belong to the variety $\nu(l_p)$ for $2 \le p < \infty$ (respectively 1); in particular, for fixed <math>p, it is not possible to topologically embed either in a product of l_p spaces $2 \le p < \infty$ (respectively $1). The above follows as the assertions are equivalent to the impossibility of factoring any finite number of iterates of <math>T_\lambda$ through spaces X covered by the theorem or the corollary (see the discussion preceding the lemma). The space Λ_2 is an example of Pietsch [8, Satz 8, p. 122], where he shows that Λ_2 is a subspace of a product of l_p spaces for any p, $1 . Hence <math>\Lambda_2 \in v(l_p)$ for all p, $1 \le p \le \infty$ (the cases p=1 and $p=\infty$ are true for any Schwartz space [3]). ## REFERENCES - 1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. - 2. J. Diestel and S. A. Morris, Remarks on varieties of locally convex linear topological spaces (to appear). - 3. J. Diestel, S. A. Morris and S. A. Saxon, Varieties of linear topological spaces, Trans. Amer. Math. Soc. 172 (1972), 207-230. - 4. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16, (1955). MR 17, 763. - 5. J. Hovarth, Topological vector spaces and distributions. Vol. 1, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863. - 6. J. Lindenstrauss and A. Pelczyński, Absolutely summing operators in L₂-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 37 #6743. - 7. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p -spaces, Israel J. Math. 7 (1969), 325-349. MR 42 #5012. - 8. A. Pietsch, l₂-faktorisierbare Operatoren in Banachräumen, Acta Sci. Math. (Szeged) 31 (1970), 117-123. MR 42 #889. - 9. S. A. Saxon, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138-140. DEPARTMENT OF MATHEMATICS, CLAREMONT GRADUATE SCHOOL, CLAREMONT, CALIFORNIA 91711