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FACTORABLE  BOUNDED  OPERATORS

AND  SCHWARTZ SPACES

STEVEN F.  BELLENOT

Abstract. A necessary condition for factoring continuous

linear maps with domain c0 or lx through a class of spaces which

include the lv spaces (in fact, include the SCV spaces) for 2^/»<oo

and a weaker result for ¡i are obtained. As an application, examples

of Schwartz spaces are constructed and used to answer questions

of Diestel, Morris and Saxon; in particular it is shown that there

are Schwartz spaces which cannot be embedded in a product of /„

spaces, K/»<oo.

For 2^/»< oo, we show the following: If S is a continuous linear map

from c0 or lœ into a normed space, then S is factorable through a space

satisfying Clarkson's "parallelogram" laws for Lv spaces ([1] or see (1)

below) only if a sequence, which is simply constructed from S, belongs

to lv. A similar result is obtained for diagonal maps on lx. Examples are

constructed to show that for no p, l</»<co, does the variety v(lP)

(defined below) contain the variety of all Schwartz spaces [5, p. 275]. In

particular this shows that the theorem of Grothendieck [4] that any

nuclear space can be topologically embedded in a product of lv spaces,

l^/»^oo, (and Saxon's generalization [9]) cannot be extended to

Schwartz spaces. Furthermore, an example borrowed from Pietsch [8]

shows that the variety of nuclear spaces is properly contained in f] v(lp),

l^/»^oo. These examples answer or partially answer questions raised by

Diestel, Morris and Saxon in [3] or by Diestel and Morris in [2].

By a map we shall mean a continuous linear function. To say a map

5:X-f Y can be factored through Z means that there exist maps T:X^Z

and 7:Z->- Y such that S=JT. Let en be the sequence with one in the nth

place and zero otherwise. A variety (see [2] or [3]) is a collection of

locally convex topological vector spaces closed with respect to taking

subspaces, quotients by closed subspaces, products and isomorphic

images. If B is a locally convex topological vector space, we let v(B) be the
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smallest variety containing B. For 2^p<oo, it is convenient to define a

Qp space to be any normed space X which has an equivalent norm || • ||

satisfying

(1) Vx, v 6 X,       \\x + yV + \\x - y\\' = 2(\\x\\" + \\y\n

Clarkson, in [1, Theorem 2, p. 400], shows that the usual norms of LP

and lv satisfy (1) for 2i%p< co. It is easy to show that the property of being

a Qv space is preserved under taking subspaces, quotients by closed sub-

spaces, and finite products. Thus any -2% space (see [6] or [7]) is a Qv

space for 2^/>< co and any normed space in v(lv) [3, Theorem 4.1, p. 217]

is a Qv space for 2^/>< co. It is also fairly easy to show that for 1 <^=2,

the dual of any normed space in v(lQ) is a Qp space, where p~1+q~1 = l.

The following lemma singles out a result needed for the theorem; it also

shows how Clarkson's "parallelogram" laws figure into the main result.

Lemma. Let 2^/?<co, X a Qv space, T:c0-^-X a map and (Xn) a

sequence such that (Xñ1) $ l„ ; then there exists a subsequence (n) of (n)

such that \Xn.\ ||F<?n.||—0 as n'-»-oo.

Proof. Suppose not; then there exists an e>0 and an integer M,

such that n_A/ implies \Xn\ ||FeJ|_£. We show by induction that there

is some choice of signs so that

(2) || T(eM ± • ■ • ± e„+kW > * ¿ I**«!'
i=0

By assumption (2) is true for k—0. Suppose that (2) is true for k=n with

choice of signs xn=eM±eM+x±- ■ -±eM+n. Now by (1) and the induc-

tion hypothesis we have

M** + '.U+»+l)ir + M*. - 'M+n+lW

= 2(||TxJ|"+ \\Te,I+n+x\n

^2(e°Z\X-¿+j\» + s* \Xj}+n+A;
\    ¿=o /

so (2) is established. But this is impossible since for all k,

II«at ± e.\i+i ± ' ' ' ± eju+A ■ 1.      2 \t-M+i\*

diverges and thus (2) implies that F is unbounded.

Theorem. A necessary condition for the map S from c0 or lx into a

normed space Y to be factorable through a Qp space, 2<p<oo, is that the

sequence (||SeJ|) belong to 1„.
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Proof. The theorem for c0 clearly implies the theorem for /„. Let

2^/»<oo and suppose S:c0->-Y can be factored through the Qv space X

by the maps T:c0->-X and J:X-+Y, but that i\\Sen\\) $ /„. Let F:c0->-c0

be the map with Ven=evM where the one-one function 7r from N into N

iN the positive integers) is such that, for all n, \\SVeJ #0 and QSVeJ) $

lp. By assumption, SV can be factored through X by the maps TV and /,

that is, SV=JTV. The lemma implies there exists a subsequence («') of (n)

such that IISKtvll-^ITTevll-^O as n'-»-ao. But by continuity of/ we have
as n'->-co:

1 = HSFevir1 IISKevll = \\JiWSVeJ\-1 TVen.)\\^0.

This contradiction completes the proof.

A diagonal map on a space A, of sequences, is a map Tk: A-*-A, where A

is a sequence (/„) and Tx(p„)=(knpn).

Corollary. A necessary condition for the diagonal map Tx:lx->-lx to be

factorable through a space X, whose dual is a Qv space (2^/»<oo) is that

A=(Aj£/J>.

Proof. If Tx:lx—>-lx can be factored through X, then T*:lx->lœ can

be factored through X*. The proof now follows from the theorem and the

fact that the adjoint of Tx, T* is the diagonal map Tx:l„-*lœ.

In [2] and [3] the following questions were raised :

(i) Is 0 viB), B e ¿% (where á?={all infinite dimensional Banach

spaces}), equal to S, the variety of all Schwartz spaces; N, the variety of

all nuclear spaces, or neither?

(ii) Does !»(/„), l</»<oo, contain S?

The following examples show that for no p, l<p<co, is (ii) true and

thus f) viB), B e 38, is properly contained in S [2]. Furthermore we show

Pi v(/„), l^/»^oo, properly contains N.

Examples. Let A=(A„) be any sequence converging to zero such that,

for k^. 1, 2 |An|*= oo, and let Tx be the diagonal map. Let A0 (respectively,

Ax, A2, Aœ) be the projective limit of the sequence:

t¡ T¡ T¡...-±^E-^E-^E,

where E=c0 (respectively, E=lx, E=l2, E—lx). Each of A(, i=0, 1, 2, oo

is a Schwartz-Fréchet space [5, Proposition 9, p. 282], that is not nuclear.

A0 and A^ (respectively A!) do not belong to the variety *-(/„) for 2^/»< oo

(respectively l</»^2); in particular, for fixed /», it is not possible to

topologically embed either in a product of lv spaces 2^/»< oo (respectively

1 </»^2). The above follows as the assertions are equivalent to the impossi-

bility of factoring any finite number of iterates of Tk through spaces X
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covered by the theorem or the corollary (see the discussion preceding the

lemma).

The space A2 is an example of Pietsch [8, Satz 8, p. 122], where he

shows that A2 is a subspace of a product of /„ spaces for any p, 1 <p< co.

Hence A2 e v(lv) for all p, l^/?<co (the cases />=1 and /?=co are true

for any Schwartz space [3]).
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